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Abstract

Entity resolution is the process of discovering groups of tuples that correspond to the
same real-world entity. Blocking algorithms separate tuples into blocks that are likely
to contain matching pairs. Tuning is a major challenge in the blocking process and in
particular, high expertise is needed in contemporary blocking algorithms to construct a
blocking key, based on which tuples are assigned to blocks. In this work, we introduce
a blocking approach that avoids selecting a blocking key altogether, relieving the user
from this difficult task. The approach is based on maximal frequent itemsets selection,
allowing early evaluation of block quality based on the overall commonality of its
members. A unique feature of the proposed algorithm is the use of prior knowledge
of the estimated size of duplicate sets in enhancing the blocking accuracy. We report
on a thorough empirical analysis, using common benchmarks of both real-world and
synthetic datasets to exhibit the effectiveness and efficiency of our approach.

1. Introduction

Entity resolution is a fundamental problem in data integration. It refers to the prob-
lem of determining which tuples (using relational notation) resolve to the same real-
world entity. At the heart of the entity resolution process is the challenge to match
tuples that share no unique identifiers, may come from non-matching schemata, and
may consist of typos and out-of-date or missing information. Entity resolution algo-
rithms typically compare the content of tuples to determine if they match and merge
matching tuples into one. Such a comparison may be prohibitive for big datasets if
all tuple pairs are compared and hence pairwise comparison is typically preceded by a
blocking phase, a procedure that divides tuples into mutually exclusive subsets called
blocks.

Tuples assigned to the same block are ideally resolved to the same real-world entity.
In practice, tuples in a block are all candidates for the more rigorous tuple pair-wise
comparison. Therefore, blocking algorithms should be designed to produce quality
blocks, containing as many tuple matches and avoiding as many non-matches as pos-
sible. Balancing the two requirements calls for an optimal block size that should not
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be too small, to avoid false negatives, or too large, to avoid false positives. Larger
blocks also increase the time spent on pair-wise tuple comparison and hence, blocking
algorithms aim at balancing the need to reduce false negatives and the need to reduce
performance overhead.

Several blocking algorithms were proposed in the literature, e.g., sorted neighbor-
hood [1], canopy clustering [2], and q-gram indexing [3]. In this work we offer a novel
blocking algorithm, dubbed MFIBlocks, that is based on iteratively applying an algo-
rithm for mining Maximal Frequent Itemsets [4]. MFIBlocks offers four major unique
features. Firstly, MFIBlocks waives the need to manually design a blocking key, the
value of one or more of a tuple’s attributes. Blocking keys in contemporary blocking
algorithms have to be carefully designed to avoid false negatives by assigning matching
tuples to different blocks. Therefore, attributes in the blocking key should contain few
errors and missing values and the design of a blocking key should take into account
the frequency distribution of values in the attributes of the blocking key to balance
block sizes. MFIBlocks relieves the designer from the difficult task of constructing a
blocking key.

Second, MFIBlocks localizes the search for similar tuples and is able to uncover
blocks of tuples that are similar in multiple, possibly overlapping sets of attributes.
MFIBlocks allows a dynamic, automatic, and flexible selection of a blocking key, so
that different blocks can be created based on different keys. This approach is in line
with the state-of-the-art in clustering literature (see, e.g., [5]) and extends the current
perception of a single-key-fits-all.

Blocks, created by the algorithm, are constrained to satisfy the compact set (CS)
and sparse neighborhood (SN) [6] properties. As such, local structural properties of the
dataset are used during the discovery and evaluation of tuple clusters and the number
of comparisons for each tuple is kept low, even though the same tuple can appear in
several clusters (using multiple keys) simultaneously.

Finally, MFIBlocks is designed to discover entity sets of matching tuples with
largely varying sizes. MFIBlocks effectively utilizes a-priori knowledge of the sizes of
matching entity sets, by discovering clusters of the appropriate size having the largest
possible commonality.

This paper introduces the MFIBlocks algorithm, discusses its properties, and
presents a thorough empirical analysis, demonstrating its superior effectiveness. We
offer techniques to make the execution time performance of the algorithm attractive,
balancing execution time with effectiveness. The novelty of our paper is as follows:

• We present a novel blocking algorithm that reduces the effort of manual tuning
and enables locating clusters of similar tuples in multiple, possibly overlapping
sets of attributes.

• We provide a thorough empirical analysis of the algorithm performance, using
both real-world and synthetic datasets, and show its superior effectiveness over
common benchmarks.

• We offer methods to ensure the efficiency of the algorithm, demonstrating the
trade-off between execution time and effectiveness.
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The rest of the paper is organized as follows. Section 2 provides a brief overview of
the entity resolution process and frequent itemset mining. The building blocks of the
proposed approach are provided in Section 3. The algorithm is presented in Section 4.
In Section 5 we provide an empirical analysis over several benchmark datasets. Section
6 provides an overview of related work, positioning our work on this background. We
conclude in Section 7 with a summary and a discussion of future work.

2. Preliminaries

The general, unsupervised entity resolution process illustrated in Figure 1 contains
blocking, comparison and classification stages. Occasionally, a standardization process
precedes these steps to increase the process effectiveness. The output of the blocking
stage is a set of blocks where each pair of tuples in a block is considered a candi-
date pair. Only candidate pairs are then compared and other pairs are automatically
classified as non-matches.

Database D Blocking

Tuple pair 
comparison

Classification

Match Non-Match

tuples

candidate pairs

candidate pair+
similarity measure+
threshold

Figure 1: Entity resolution process

Using similarity measures such as the Jaccard coefficient [7], candidate pairs are
classified as matching or non-matching. A tuple pair (t1, t2), over a schema of k com-
parable attributes, is represented as a vector v = [v1, ..., vk]. Each vi is a measure of
the similarity of the i-th attribute. In most cases, the entries in the vector v are in the
range [0, 1]. A function f over the values of these entries is used to classify a pair
according to a predefined threshold.

In this paper we focus on the blocking stage and suggest using maximal frequent
itemsets to generate blocks of tuples as candidates for the classification stage. For
completeness sake, we now provide an overview of the concepts of frequent and maxi-
mal frequent itemsets [8]. Frequent itemsets originated from the data mining field and
was used in other fields as well, e.g., for identifying similar Web documents [9]. This
overview uses the notions of items and transactions, based on the native vocabulary of
data mining. It is worth noting that the term transaction has a different (albeit related)
meaning to the same term in the database literature, referring to a bag of items from a
raw dataset, e.g., billing transactions. Let M = {I1, I2, . . . , Im} be a set of items and
let T =

〈
T1, T2, · · · , Tn

〉
be a set of transactions. A transaction Ti = (tid, I) with

identifier tid contains a set of items I ⊆M . The support of some set of items I ⊆M
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is the set of transactions in T that contain all items in I . Each transaction possibly
contains additional items.

transaction items
t1 a1, b1, c1
t2 a1, b1, c2
t3 a2, b2, c3
t4 a2, b2, c2
t5 a1, b3, c4

Table 1: Sample Transaction Database

Example 1. Table 1 contains five transactions with the items M =
{a1, a2, b1, b2, b3, c1, c2, c3, c4}. Transaction t1 contains items {a1, b1, c1}. The
support set of itemset {a1, b1} is the set of transactions {t1, t2}.

I is frequent if I’s support size surpasses a minimum support threshold minsup.
The downward closure property ensures that a subset of a frequent itemset is also a fre-
quent itemset [8] and therefore a frequent itemset cannot contain an infrequent itemset.

Given a transaction set and a minimum support threshold minsup, the problem of
finding the complete set of frequent itemsets (FI) is called the frequent itemset mining
problem. A major challenge in mining frequent itemsets from a large or dense (with
many different items) dataset, is that a too low minsup thresholds generates a huge
number of frequent itemsets. For example, if there is a frequent itemset of size l, then
all 2l − 1 nonempty subsets of that itemset are also frequent due to the downward clo-
sure property. To overcome this difficulty, we introduce next maximal frequent itemsets
(MFIs for short) [10].

A frequent itemset X is maximal if there does not exist a frequent itemset Y such
that Y ⊃ X . Due to the downward closure property of frequent itemsets, all subsets
of a maximal frequent itemset are frequent, while all supersets of such an itemset are
infrequent.

Example 2. There are seven frequent itemsets in Table 1, with minsup = 2:

{{a1}, {a2}, {b1}, {b2}, {c2}, {a1, b1}, {a2, b2}}

and three maximal frequent itemsets with the same support of 2:

{{a1, b1}, {a2, b2}, {c2}}

3. MFI-based blocking

Maximal frequent itemsets lend themselves well to the problem of entity resolution.
MFIs are sets of tuples (support set) with maximal commonality over the set of values
in a database. Sets created by an MFI algorithm may be interpreted as similarity over
subsets of attributes, as formalized below. The added value of such sets is that the
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set of attributes is chosen automatically by the algorithm, which paths the way to a
flexible key selection mechanism. Whenever the expertise of choosing a clustering key
exists, MFI-based blocking can take it into account (using, e.g., weights). However,
MFI-based blocking can effectively produce good blocking results even in the absence
of such expertise. MFI-based blocks provide, beyond blocks, useful hints as to the
attributes that most affect the pairing, and as such can also serve as an exploratory tool,
providing useful information for the comparison and classification stages as well.

We face three main challenges when designing an MFI-based blocking algorithm.
From an engineering point of view the new algorithm should fulfill this promise and
provide higher quality blocks than existing blocking algorithms. In this work we show
that a careful design of the algorithm yields empirical improvement of block accuracy
over existing blocking mechanisms that ranges from 25% to more than 700% in terms
of F-measure.

A second challenge we face has to do with algorithm tuning. The promise of MFI-
based blocking is in providing a flexible algorithm that can do even without any exper-
tise in the design of a blocking key. However, such tuning gain should not be replaced
by other, possibly harder parameters to tune. The proposed algorithm requires three
parameters. The first, introduced as the MFI support size (minsup) can be easily de-
rived from the task at hand, as discussed in Section 4.3. The second defines a minimum
threshold of cluster similarity (min th). The third parameter specifies the minimum
strength of a cluster, called neighborhood growth and formally defined below. As it
turns out, these last two parameters are strongly dependent. In particular, by setting
the neighborhood growth first, min th can be set automatically. Our empirical study
shows that the neighborhood growth is most beneficial in a narrow range of values, and
setting it requires little expertise.

The third and final challenge has to do with performance. The problem of count-
ing the number of maximal frequent itemsets in a transaction set is #P-complete [11],
which is no better, in the worst case, then solving the blocking problem by enumerat-
ing all possible blocks. However, several algorithms have been shown empirically to
efficiently mine all maximal frequent itemsets [12, 4, 13] and their use is widespread.
Still, to manage the blocking process efficiently, we have strived to optimize the per-
formance of the proposed algorithm and validated the outcome against other leading
blocking algorithms, measuring trade-off between performance and effectiveness. To
start off, we use as a routine in our implementation FPMax [4], which received the
best implementation award and displayed the best performance for both low and high
supports in the frequent itemset mining implementations report from 2003 [14]. With
FPMax, we show empirically that blocking can be done in a quadratic runtime, sim-
ilar to other blocking algorithms that are based on tuple pairwise comparison. Such
performance may still be prohibitive for large datasets. Therefore, in Section 4 we dis-
cuss methods to improve the coefficients of this complexity. We show empirically that
the proposed algorithm is competitive with reported performance of existing blocking
algorithms, making it an attractive blocking alternative.

3.1. MFI-based blocking model
We now present definitions and notations that serve us in devising the algorithm.

We accompany the presentation with a case study database, given in Table 2. This
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tuple ID given name surname address1 suburb postcode state phone
t1 xavier tomich gamban square murgon 2150
t2 xavier tomich gambandsquare mudrgon 2151
t3 savannah savannah tuthiolzlace dayle sford 4120 nsw 0752913455
t4 savannah humphreys tuthill place daylesford 4120 nsw 0752913455
t5 savannah humphreys tuthill place daylqogrd 4102 ndw 0752913455
t6 savannah humphfjfeys tuthill place daylesord 4219 nsw 0752913455
t7 savanmwh humpmhheys tuthill place daylesford 4105 nsw 0752913455
t8 savanah humphreys tuthill klace dayles fofrd 4120 nhs 0752913455
t9 chelsear hanns mugglestoea elwood 2119 nsw 0727375124
t10 chelara hanna mugglestonna elwood 2161 nsw 0727375124
t11 chelsea hanna mugglestone elwood 2117 nsw 0727375124
t12 chelsibe habmy mugglestone elwood 2117 nsw 0727375124
t13 raquel rudad wilkinsfateet wellington point 4054 sa 0743902126
t14 annabel burleigh wakelin circuit newborough 2150 nsw 02 48546447

Table 2: Case Study Database

example has five entities, three of which are represented by tuple sets of varying size
(6, 4 and 2). The tuples were generated using the database generator of FEBRL [15].

Consider a relation R (A1, A2, ..., An) and an instance of R, D = {t1, t2, ..., tm}.
GivenD, an MFI blocking algorithm generates a set of blocksBo =

{
B1, B2, ..., Bp

}
,

where a block Bi ∈ Bo is a quadruple Bi =
〈
P i, Ai, Ei, Si

〉
.

P i (1 ≤ i ≤ p) is a subset of D so that D =
p⋃

i=1

P i and different P i sets may

overlap. P i is called the support of Bi and all tuples in P i are considered candidates
to represent the same real-world entity. We denote by M i the bag of values that appear
in each of the tuples in P i.

Each block Bi is created based on a set of attributes Ai ⊆ {A1, A2, ..., An}. Only
values that are assigned to attributes Ai are considered in assessing the participation of
tuples in Bi. The itemset Ei ⊆M i is a set of values, created using values of attributes
in Ai. Each such value is common to all tuples in P i, i.e., it appears in each and every
tuple in P i. Finally, Si is a score, assigned with Bi based on the similarity of the Ai

values for tuples in P i. The score of a block Bi is computed using a score function σ
over the set of tuples in P i. A typical example of such a score function is the Jaccard
similarity measure [16] for bags, σ(P i) = |Ei|

|Mi| . As a notation convention, we use σi

to denote the use of Ai attributes in computing a score.
The Compact Set (CS) and Sparse Neighborhood (SN) criteria [6] are useful for

characterizing “good” clusters. These criteria capture local structural properties of
clusters, where elements in each cluster are closer to each other than to other elements,
making their local neighborhood empty or sparse. We find the principles behind these
criteria to be also desirable properties of blocks returned by a blocking algorithm. This
is because duplicates of the same entity will usually be similar to one another but have
only a small number of other tuples similar to them as well. We adapt these principles
for blocking algorithms, as follows.

Definition 1. Let Ai ⊆ {A1, A2, ..., An} be a subset of attributes and σi be the score
function that uses Ai. An Ai-CS is a set of tuples such that for every two tuples
{t1, t2} ⊆ Ai-CS, σi({t1, t2}) > σi({t1, t3}) where t3 6∈ Ai-CS.
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Definition 1 extends the definition of [6] that uses tuple distance as a score func-
tion to a general score function, while maintaining the tuple pairwise comparison. The
following proposition defines a condition for Ai-CS conformance, effectively link-
ing the essence of MFIs with entity resolution. The proposition assumes that σ is
monotonic with respect to value containment. That is, for two itemsets Ei ⊇ Ej ,
σ(P i) ≥ σ(P j). As a simple example of a monotonic σ one may consider itemset
cardinality (σ(E) = |E|).

Proposition 1. Let Bi =
〈
P i, Ei, Ai, Si

〉
be a block and let σi be monotonic wrt

value containment. P i forms an Ai-CS.

Proof. Consider tuples {t1, t2} ⊆ P i and assume, by contradiction, that there is a
tuple t3 6∈ P i, such that σi({t1, t3}) ≥ σi({t1, t2)}). Let E1,2 denote the set of values
(originating from attributes Ai) common to t1 and t2, and let E1,3 denote the set of
values common to t1 and t3. We note that sinceE1,2 andE1,3 must both contain values
that appear in t1 then either E1,2 ⊇ E1,3 or E1,3 ⊇ E1,2. Since σi is monotonic and
σi({t1, t3}) ≥ σi({t1, t2)} then the former cannot hold and therefore E1,3 ⊇ E1,2,
but then it should be part of P i, contradicting our assumption that t3 6∈ P i.

Definition 2. The neighborhood of a tuple t is a set of tuples that share some block
with t: N(t) =

⋃
P i|t∈P i P i. The neighborhood growth (NG) of tuple t is |N(t)|, the

cardinality of N(t).

Higher |N(t)| means a higher number of pairwise comparisons for t in the entity
resolution process. Our definition of Sparse Neighborhood (SN) considers |N(t)| and
a minimal block size minsup, as follows:

Definition 3. A set of tuples D′ ⊆ D is considered a sparse neighborhood if |D′| = 1
or maxt∈D′ |N(t)| ≤ p ·minsup, where p > 1 is a predefined constant.

Ultimately, our goal is to find the largest set of blocks that still satisfies the sparse
neighborhood constraint. When minsup is set to be the size of the expected clusters,
the sparse neighborhood constraint limits the number of comparisons a tuple will incur
during the entity resolution process based on this size and the parameter p, which was
shown in our preliminary experiments to yield good results in the range of [1.5, 4] and
is easily tuned.

A tuple that, upon termination of the blocking algorithm, belongs to at least one
block Bi ∈ Bo with support size equal or greater than j (|P i| ≥ j), will be considered
j-covered. A tuple t is minsup-covered if it belongs to a block Bi ∈ Bo that is
discovered by an MFI algorithm with support threshold of minsup. Tuples that do not
belong to any Bi ∈ Bo do not to have a match and remain singletons.

Example 3. Table 3 presents blocks of the case study (Table 2) that were created by
the algorithm (see Section 4) with minsup = 3. For exposition reasons, we look for
clusters of size three in the dataset. Section 4.3 details how the minsup parameter
should be selected. Each block may use a different attribute set as a blocking key,
determined automatically by the algorithm. For example, B1 uses A1 = {given name,
address1, and phone} while B2 uses A2 = {surname, phone}.
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Block Bi Support P i Itemset Ei

B1 {t4, t5, t6} {savannah, tuthill place, 0752913455}
B2 {t4, t5, t8} {humphreys, 0752913455}
B3 {t3, t4, t8} {4120, 0752913455}
B4 {t3, t4, t6, t7} {nsw, 0752913455}
B5 {t4, t5, t7} {0752913455, 3050536}
B6 {t9, t10, t11} {elwood, nsw, 19920405, 0727375124}
B7 {t10, t11, t12} {nsw, 21, 0727375124}

Table 3: Blocks of the Case Study

Using the Jaccard similarity measure as defined above, we arrive at σ(P 1) = 3
14

and σ(P 6) = 4
17 . The blocks in Table 3 are all Ai-CS. For example, there is no tuple

closer to t4 over A1 = {given name, address1, phone} than t5 and t6. Likewise, there
is no tuple closer to t4 over A3 = {postcode, phone} than t3 and t8.

Also, for p = 2, the generated block set satisfies the sparse neighborhood con-
straint:

maxt∈D|N(t)| = |N(t4)|
= |P 1 ∪ P 2 ∪ P 3 ∪ P 4 ∪ P 5|
= |{t5, t6} ∪ {t5, t8} ∪ {t3, t8} ∪ {t3, t6, t7} ∪ {t5, t7}|
= 5 ≤ 2 ·minsup = 6

Finally, the tuples t3-t12 are 3-covered, while each of the tuples t1, t2, t13, t14 re-
mains a singleton. It is worth noting that the outcome of executing the algorithm with
minsup = 3 does not yield the best possible set of blocks. For example, tuples t3-t8,
representing a single entity, never appear in a single block. In Section 4.3 we show how
to select the correct minsup level, and Example 5 illustrates how the correct blocks
are created.

4. The MFIBlocks algorithm

This section introduces MFIBlocks, a blocking algorithm using maximal frequent
itemsets. The algorithm is presented in a modular fashion. We start with describing the
data setup (Section 4.1) followed by a method for assessing cluster quality in Section
4.2. We then discuss the selection of minsup (Section 4.3) and the application of the
compact set and sparse neighborhood criteria (Section 4.4). The algorithm pseudo-
code is presented in Section 4.5, followed by a discussion about performance (Section
4.6). To illustrate the various elements of the algorithm, we use Table 2.

At a high-level, the algorithm operates as follows: after a preparatory phase, a
series of iterations proceeds. In each iteration, the MFI mining algorithm is run on a
decreasing set of uncovered tuples, creating a new set of blocks. After each iteration,
the blocks are scored. The final set of blocks returned as output consists of the largest
possible set of high-scoring blocks such that the sparse neighborhood criterion is met.
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4.1. Data setup

Frequent itemset mining algorithms run on a dataset of transactions, where each
transaction is composed of a set of items I . In this preparatory phase we transform a
database into a suitable input dataset for the MFI algorithm. We would like to provide
support for overcoming variations that stem from abbreviations, synonyms, and typo-
graphical errors and also to maintain information regarding the structural information
of the data. Therefore, as a first step, a lexicon of items is created and enumerated.
Each attribute value is separated into q-grams [17], a known approach in Information
Retrieval for overcoming typographical errors. Identical q-grams, originating from the
same attribute, receive the same id while identical q-grams that originate from different
attributes are assigned different ids. Once the lexicon is constructed, database tuples
are transformed into a transaction dataset by replacing attribute values with the ids of
their corresponding q-grams. At this point, a tuple t becomes a set of items, referred to
as t.items, where each item id, id ∈ t.items corresponds to a q-gram in t. Since an
item may appear in a tuple more than once, its frequency is recorded and used later on.

4.2. Assessing block quality

In Section 3.1 we presented σi, a generic score function over tuples in a block. We
now present a concrete instantiation that is used in the algorithm. Intuitively, we would
like to give a higher score to blocks with many common items, and a few uncommon
items. Uncommon items may be the result of inaccurate and missing values. Also,
tuples in a block may share items of limited discriminative power, e.g., a certain item
may appear in half of the database tuples. Finally, the differences between tuples may
surpass the commonality represented by the block.

To assess the quality of a block we use a version of the extended Jaccard similarity
[16], which accounts for similar (as well as exact) q-grams. Let Bi be a block with
support P i. M i = ]t∈P it.items is the itembag of all tuples in P i, where ] stands for
the bag union operation. Recall that t.items represents the q-grams of a tuple t.

We now define the aggregated similarity of an item j ∈ M i to its support set P i,
denoted αi(j). Intuitively, αi(j) should reflect the strength of relationship of item j
with the block Bi. Items with a high aggregated similarity metric indicate a larger
commonality among tuples in a block.

Definition 4. The aggregated similarity of an item j in a block Bi is:

αi(j) =
1

|P i|
∑
t∈P i

max
k∈t.items

Sim(k, j)

where Sim(k, j) is a pairwise string similarity metric.

We use the Jaro-Winkler method [18] in our experiments to compute Sim (k, j).
With the proposed method, items in Ei receive an aggregated similarity of 1.0 because
such items appear in each and every tuple in P i. However, we also give a relatively
high score to items that have similar items in a large part of P i. Therefore, the itemset
M i is divided into two disjoint groups. First, the set of common items, denoted Ci, is
the itemset whose aggregated similarity metric (Definition 4) is above some predefined
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threshold Sim th. For Sim th = 1, Ci = Ei since each item in Ei is common to all
tuples in P i and was thus chosen by the MFI algorithm. The remaining items P i/Ci

are uncommon items, items whose aggregated similarity metric is below Sim th.

Example 4. Consider the block Bi with P i = {t1, t2} from Table 2 and assume the
use of 3-grams and Sim th = 0.9. All items except ‘address1’ and ‘suburb’ are
identical, and will be classified as common items. The 3-gram ‘mur’, originating from
t1’s ‘suburb’ attribute will be classified as a common item because it is relatively close
to the 3-gram ‘mud’ originating from t2’s ‘suburb’ attribute (Sim(‘mud’,‘mur’)≥ 0.9).
Therefore, the aggregate similarity metric for ‘mur’ passes the aggregate similarity
threshold and is considered a common item.

We propose to set a score using the tf/idf weighting scheme [19], a common mea-
sure in Information Retrieval that measures both commonality and its significance. The
tf/idf score of an item j in block Bi is computed as follows:

vi(j) = log(tfi(j) + 1) · log(idfi(j)), (1)

where tfi(j) is the total number of times an item j appears in the bag M i (if item
j ∈ Ei then tfi(j) ≥ |P i|). idfi(j) = |D|

nj
where nj is the number of tuples in

database D that contain item j. The tf/idf weight for an item j is high if j appears
many times in the support set P i (large tfi(j) ) and j is a sufficiently rare item in the
database (large idfi(j)). The above score is calculated for all distinct items in M i.

The lexicon, discussed in Section 4.1, may be used to add metadata to the ids which
represent the items. This metadata may include relative weights indicating the quality
and discriminative power of the attributes from which the items originated. We rep-
resent the weight of item j ∈ M i as w(j). These weights offer an opportunity to
inject expert knowledge into the process. An expert, for example, can identify some at-
tributes to be more important than others, which is reflected in assigning higher weights
to items of these attributes. In the absence of expert knowledge (the setting we have
assumed in our empirical study) weights are set to be equal. Combining the tf/idf score
and item weights in the extended Jaccard similarity function [16] results in the follow-
ing score function that measures the similarity among members of a cluster rather than
the similarity between two strings in the Jaccard score function [7]:

σi(P i) =

∑
j∈Ci w(j)vi(j)αi(j)∑

i∈Mi w(j)vi(j)
(2)

4.3. Selection of minsup

The minsup parameter sets the minimum number of tuples in a block (|P i|). If
minsup is set too high then no MFIs may be mined, for the lack of commonality
among members of clusters of large size. Another scenario is that large clusters may
share some commonality, which may be small or insignificant, resulting in a low quality
clustering that masks the true match among cluster members. On the other hand, if
minsup is set too low, then larger clusters may be missed, resulting in low recall. This
happens whenever inside a larger cluster there may be groups of tuples with higher
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commonality, causing the generation of larger MFIs with a smaller support size (i.e.,
less tuples in each cluster).

The following two observations guide our treatment of the minsup parameter.
First, we observe that duplicate tuple sets may vary in size. For example, in the Cora
dataset (see Section 5) there is a big variation in the number of duplicate tuple sets,
representing the same real-world entities, with some duplication sets having more than
fifty tuples. Our second observation is that in many scenarios some information on the
size of duplicate sets may be known in advance. For example, when integrating two
clean sources, each tuple may have at most one duplicate and minsup can be set to 2.

Based on these two observations, the algorithm is designed to proceed in an itera-
tive fashion. The initial minimal support is set to be an upper bound on the expected
duplication set size. At each iteration, after the high-scoring clusters are discovered and
processed, the tuples belonging to high-scoring clusters are removed from the dataset,
and the algorithm continues with smaller thresholds on smaller datasets. Such a design
also enables an improved performance since smaller support thresholds yield more
MFIs and therefore starting by mining MFIs with the largest expected support size
results in smaller datasets for lower thresholds.

Example 5. As an example, consider Table 2 once more. There are duplicate sets of
sizes 6, 4, and 2. Executing an MFI algorithm with minsup = 6 returns only the large
duplicate size and not the MFIs corresponding to the size-4 and size-2 clusters, due to
lack of support. After the big cluster is discovered, we can remove the detected tuples
and rerun the MFI mining algorithm on the remaining tuples with a lowerminsup = 4
and discover duplicate clusters of size 4 (tuples 9-12 in our running example). Itera-
tively, the algorithm can be rerun on the leftover tuples with minsup = 2 to discover
blocks with support of 2 tuples.

4.4. Applying the SN and CS criteria

Following the desirable properties of the CS and SN criteria [6] introduced in Sec-
tion 3, we now show the use of these criteria in the algorithm configuration. The
obvious way to decide on block acceptance is to define a score acceptance threshold,
min th, which turns out to have a dramatic effect on the quality of chosen blocks. A
threshold set too low leads to low precision while a threshold set too high results in
a decrease in recall. The main challenge with setting min th is the high dependency
on the error characteristics of the data, a feature that may be hard to recognize and
dramatically changes among datasets. On the other hand, the configuration of the SN
criterion, p, is simpler as it represents a generic approach towards the blocking process
that is translated to a limit on a tuple’s neighborhood. For example, setting the param-
eter p to 1.5 when minsup = 2 limits the number of pairwise comparisons a tuple will
undergo to 3. Our empirical analysis indicates that in most cases a value p ∈ [1.5, 4]
yields satisfactory results.

As it turns out, the two parameters, min th and p, are tightly connected. To be
more precise, configuring the sparse neighborhood constant, p, induces a minimum
threshold min th value. The reason for this is as follows: p constraints the neighbor-
hood of each tuple in the output blocking, resulting in the elimination of low scoring
blocks (according to Eq. 2). Therefore, the algorithm seeks the smallest threshold,
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min th, such that the set of blocks that satisfy Si ≥ min th also satisfy the constraint
maxt∈D|N(t)| < p ·minsup.

This dependency enables setting the score threshold by default to 0. With the ap-
propriate p, min th automatically rises to a level that complies with the SN criterion.
An administrator may wish to constrain the scores of the selected blocks in addition to
p, e.g., some tasks may require only high scoring blocks. In such a case, the min th
parameter may be configured manually to a strictly positive value. We consider this
scenario to be the exception rather than the rule.

4.5. The algorithm pseudocode

The pseudo-code of MFIBlocks, an MFI-based blocking algorithm, is detailed in
Algorithm 1. The algorithm receives as input the tuple database, D, an initial support
minsup set to the largest expected duplicate cluster in D and its decrement step from
one iteration to the next st. The algorithm is also provided with the sparse neighbor-
hood constant, p, and an optional absolute minimum score threshold min th. min th
can mostly receive a default value of 0 because the algorithm automatically prunes
blocks of low score due to the violation of the sparse neighborhood constraint p.

The algorithm runs in iterations, where in each iteration (lines 2-31) the MFI min-
ing algorithm is run with a smaller minimum support. Each such MFI run creates a set
of blocks. Tuples belonging to a block that complies with the sparse neighborhood and
minimum threshold criteria, are considered minsup-covered. They are marked for
further processing and are then removed from the database. The algorithm continues
until either all the tuples in D are covered or minsup falls below 2. In each additional
iteration, the MFI mining algorithm is run on the set of uncovered tuples, returning a
new set of tuple sets (line 4).

Following the MFI mining step, blocks are extracted and their size is checked.
Blocks with support size larger than p ·minsup do not comply with the sparse neigh-
borhood constraint, and are therefore discarded (lines 10-12). Otherwise, the block’s
score is calculated using the cluster Jaccard similarity (see Eq. 2). The block is kept if
its score passes the min th threshold (lines 13-16).

At this point we illustrate how the compact set and sparse neighborhood criteria,
discussed in Section 4.4, are implemented in the algorithm. We are interested in find-
ing a set of blocks of maximum cardinality, where each block maintains a score above
min th and that the sparse neighborhood constraint is satisfied (maxt∈D|N(t)| ≤
p · minsup). In order to achieve this we keep track of the candidate pairs and ad-
just the min th dynamically. Once the algorithm encounters a block Bi with score
Si > min th, the distinct tuple pairs in the block are recorded (line 18). If the sparse
neighborhood criterion is violated for some tuple t ∈ P i we remove from considera-
tion all candidate pairs originating from blocks whose score is below the lowest scoring
block to which tuple t belongs. This means that the increase of the min th is based on
the value of minBi|t∈P i Si. Finally, the set of returned blocks corresponds to the low-
est score that complies with the sparse neighborhood criterion. It is worth noting that
the neighborhood growth constraint may be left unsatisfied for a certain minsup. In
such a case, the search for thresholdmin th will be set to 1.0, alerting that no blocking
exists that satisfies the constraint.
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Algorithm 1: MFI based blocking
Input: Database D; initial support size minsup; step st > 0 for decreasing minsup; NG limit p;
Optional Input: minimum threshold min th (default is 0)
Output: (Sparse) matrix M [i, j] containing the tuple pairs to be compared by an Entity Resolution
algorithm
1: P = ∅ {currently covered tuples in D}
{repeat until all tuples are covered or minsup falls below 2}

2: while (P 6= D AND minsup ≥ 2) do
3: candidateBlocks← ∅
4: MFIs←MFI(D\P,minsup) {run the MFI algorithm on the uncovered tuples}
5: for all Ei ∈MFIs do
6: P i ← {r ∈ D : Ei ⊆ r.items} {calculate the support of Ei}
7: candidateBlocks← candidateBlocks ∪ P i

8: end for
9: for all cB ∈ candidateBlocks do

10: if size(cB) > p ·minsup then
11: ignore cB and continue
12: end if
13: score← ClusterJaccard(cB)
14: if (score < min th) then
15: ignore cB and continue
16: end if
17: for all (ri, rj) ∈ cB do
18: mark (ri, rj) as a candidate pair
19: if (NG(ri) > p ·minsup) then
20: min th←MAX(min th,minBk|i∈Pk Sk)

21: end if
22: if (NG(rj) > p ·minsup) then
23: min th←MAX(min th,minBk|j∈Pk Sk)

24: end if
25: end for
26: fetch marked candidate pairs belonging to clusters with score > min th
27: update M [i, j] with the marked pairs
28: end for
29: P ← P∪ newly covered tuples from M [i, j]
30: minsup← max(minsup− st, 0)
31: end while
32: return M [i, j]

At the end of each iteration, the tuples that belong to a block in the finalized block
set are added to the set of covered tuples (line 29).

As a final remark, we note that Algorithm 1 may be easily adjusted to run on any
encoding of the database, including phonetic schemes such as Soundex. This type of
encoding can replace the encoding of the attribute values as q-gram ids.

4.6. Improving Performance

The bottleneck of the proposed algorithm is the processing of a large amount of
MFIs (lines 4-20 in Algorithm 1). The problem of enumerating the set of maximal
frequent itemsets is #P-complete [11] (see discussion in Section 3), which is also the
worst case running time of Algorithm 1. We observe that the number of MFIs depends
on the number and frequency of items in the dataset. A rare item that belongs to a small
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number of tuples can participate in only a few MFIs. For example, an item contained
in two tuples may participate in at most a single MFI when minsup = 2. Using the
same support threshold, an item contained in 5 tuples may participate in at most 10
MFIs. Highly frequent items, therefore, may combine to create a larger number of
MFIs. In our setting, such items provide little information for two reasons. First, MFIs
containing highly frequent items have a larger chance of being supported by a large
number of tuples. In many cases such MFIs violate the neighborhood growth constraint
and are discarded even before their score is calculated (lines 10-11 in Algorithm 1).
Even if such an MFI satisfies the constraint, due to the high frequency of its members,
it would likely score low and be discarded (lines 14-15) after having used precious
resources to compute its score. Highly frequent items also receive a low tf/idf score,
and thus have little impact on the overall score even for MFIs that pass the threshold.

Given the observation above, we propose a method for pruning a small percentage
of the most frequent items as a preprocessing step. During the initial data processing,
we count the number of occurrences of each q-gram. We can then remove a certain
percentage of q-grams (in our experiments, see Section 5.2.3, we found that pruning
up to 0.3% of q-grams is sufficient to yield good results) before running the algorithm.

5. Experiments

This section presents an extensive empirical comparison of Algorithm 1 with other
blocking algorithms. We describe the experiment setup in Section 5.1. Section 5.2
details and discusses the experiment result using both real-world and synthetic datasets
with several error characteristics. The dataset sizes are in the range of 1000 to 2 million
tuples. The experiments demonstrate both the effectiveness of the proposed approach
with regard to known quality metrics (precision, recall and F-measure), and its practi-
cality in terms of runtime. In particular, we show that the effort that is invested in the
blocking stage pays off when it comes to the comparison stage.

The algorithm was implemented in Java using JDK 1.6, and the experiments were
run on a Linux server with four 3.30GHz Intel Core processors with 32GB RAM.1

5.1. Experiments setup

5.1.1. Datasets
We ran the proposed algorithm on both real-world and synthetic datasets. The

real-world datasets include the benchmarks Restaurants, Census, and Cora datasets
from the SecondString toolkit.2 We also experimented with the CDDB dataset,3 a
randomly selected sample of CDs from freeDB.4 Each CD entry contains the name,
artist, category, genre, and year fields along with the track titles. Following Draisbach
and Naumann [20], we made use of all available fields, but disregarded all but the first

1The binaries and execution instructions are available for download at
http://www.technion.ac.il/˜batyak/MFIBlocksImp.zip

2Available from: http://secondstring.sourceforge.net
3http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG Naumann/projekte/dude/cd.csv
4http://www.freedb.org
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DB Name size # of Domain # of prefix max # of
matching pairs attributes duplicates per tuple

Restaurants 864 112 Restaurant guide 5 none 1
Cora 1295 17184 Bibliographic 12 30 81

Census 842 344 people 5 none 1
CDDB 9763 299 music CDs 6 none 5
Clean 1K-2000K 200-40K names and addresses 12 5 3
Dirty 1K-2000K 400-430K names and addresses 12 5 9

Table 4: Datasets

track. Draisbach and Naumann set the blocking key to the first three letters of the
artist, title, and first track. In our approach, the key was selected automatically. Table 4
summarizes the dataset features.

We generated synthetic datasets of sizes 1K, 5K, 10K, 50K, 100K, 200K, 500K,
1000K, and 2000K tuples using the FEBRL [15] data set generator. For comparison,
we generate the datasets according to parameters specified by Christen [3]. Tuples
are first created based on frequency tables containing real-world names (given and
surname) and addresses (street number, name and type, postcode, suburb, and state
names). A random generation of duplicates of these tuples is based on modifications
(e.g., inserting, deleting or substituting characters, and swapping, removing, inserting,
splitting or merging words), and real-world error characteristics. We generated two
datasets for each size, with different error characteristics, as follows. Clean datasets
contain 20% duplicates with up to three duplicates per tuple, one modification per
attribute at most, and up to three modifications per tuple. Dirty datasets contain 40%
duplicate tuples with up to nine duplicates per tuple, no more than three modifications
per attribute, and up to ten modifications per tuple.

5.1.2. Parameter settings and evaluation metrics
In our experiments, we have varied three parameters of Algorithm 1 to test their

impact on effectiveness and efficiency: 1) the SN parameter p; 2) the initial support
size minsup; and 3) the optional parameter, minimum score threshold min th.

For each dataset we ran two versions of the experiment. The first, without an SN
constraint, is effectively achieved by setting p to be large (p > 100). Therefore, all
blocks that pass the minimum threshold min th are included in the final blocking. In
the second version, we set p ∈ [1.5, 4], which was shown in our preliminary experi-
ments (not shown here for lack of space) to be a range that yields good results.

In databases with long attribute values, we applied Algorithm 1 on value prefixes.
This highly increased performance with little effect on the evaluation metrics. The
same prefix was applied to all attributes in a dataset.

When comparing our algorithm to 12 other blocking techniques implemented in
FEBRL [15], we have relied on the authors’ selection of blocking keys as well as other
parameters (similarity function, similarity threshold, q-gram size) that were set in [3].
Therefore, we compared our results to the results achieved by using three different
blocking keys that were defined per dataset using a variety of combinations of tuple
attributes using domain experts. For Algorithm 1 we included all attributes in the
dataset with equal weights, eliminating the need to manually design a blocking key.
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The blocking algorithms were assessed using three measures, namely Recall (known
in the entity resolution literature as Pairs Completeness PC), Reduction Ratio (RR)
[21] and Precision (known as Pairs Quality PQ) [3]. Recall (PC) measures the cov-
erage of true positives, i.e., the number of true matches in blocks versus those in the
entire database. Let PB be the number of matching pairs located in blocks returned by
a blocking algorithm and let PD be the total number of matching pairs in the database.
Then recall is calculated as PC = PB

PD
. Precision (PQ) is the number of true positives

divided by the total number of generated tuple pairs. A high PQ value means that the
blocking algorithm is effective and mainly generates truly matched tuple pairs. On the
other hand, a low PQ value indicates a large number of generated non-matches, re-
sulting in more tuple pair comparisons, which is computationally expensive. Let C be
the number of comparisons in blocks generated by a given blocking algorithm. Then
precision is calculated as PQ = PB

C . The F-measure is the harmonic mean of recall
(PC) and precision (PQ): F = 2PC·PQ

PC+PQ .
The Reduction Ratio measure quantifies how well a blocking algorithm prunes can-

didate pairs to be compared. Let N be the number of possible comparisons between
tuples in a dataset. Then, RR = 1 − C

N . In the absolute majority of our experiments,
over all blocking algorithms, RR > 0.9, sometimes reaching 0.99. Therefore, it does
not serve as a discriminative measure and we focus in our analysis on precision (PQ)
and recall (PC), and its derivative, the F-measure (F ).

5.2. Experiment results and analysis

We now present and analyze the results of our experiments. We start with the four
real-world datasets, analyzing each of them separately (Section 5.2.1). We then move
to synthetic data to assess the impact of various control parameters on performance
(sections 5.2.2 and 5.2.3). Finally, Section 5.2.4 compares the combined blocking and
comparison stages runtime results with existing works in the literature.

We start with a few observations on the performance of Algorithm 1. The sparse
neighborhood constraint p has little effect on recall (PC), which remains high for
almost all tested p values. On the other hand, precision (PQ) was drastically improved
when limiting p to be in the range of [1.5, 4]. We observe that p compensates for a low
threshold parameter (min th). This behavior exhibits the usefulness of the proposed
approach. It demonstrates that the knowledge regarding the expected size of duplicate
clusters, which is easier to asses, can replace the harder task of configuring similarity
thresholds. Since the behavior described above applies to almost all of the datasets, we
show only results for p ∈ [1.5, 4].

5.2.1. Real-world datasets
We now compare the performance of Algorithm 1 with the blocking algorithms

surveyed in [3] on three real-world datasets. Each blocking algorithm was run with
three different blocking keys and various parameter settings. For each dataset, we
compare Algorithm 1 to the highest performing algorithm on that dataset, in terms
of its F-measure, as reported by Christen. For the Restaurants dataset it is the Suffix
Array blocking (SuAr) algorithm [22], for the census dataset it is the threshold-based
canopy clustering (CaTh) algorithm [2] (closely followed by the standard blocking
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Figure 2: Real-world datasets: average and standard deviation

algorithm), and for Cora it is also the threshold based canopy clustering algorithm. All
other algorithms in the survey demonstrated worse performance.

Figure 2 provides a comparison of the average F-measure and standard deviation
of the best performing algorithms [3] and Algorithm 1. The average for Algorithm 1
was taken over all NG constraints and all minimum score thresholds. Algorithm 1 is
better, on average, where in both the Restaurant and Cora datasets this improvement is
statistically significant. In particular, the improvement is apparent in the Restaurants
dataset, where the F-measure of Algorithm 1 was six times better, on average, then the
best performing algorithm in the survey.

Figures 3a-3c provide a graphic illustration of the effectiveness of Algorithm 1
when run under various similarity thresholds (min th) for the three real-world datasets.
The precision (PQ) measure in Figure 3a starts low for low thresholds and increases
significantly with higher thresholds. The addition of the sparse neighborhood con-
straint (marked as PQ-NG1.5), which bounds the neighborhood growth of the tuples,
increases precision dramatically for low thresholds. We observe the same phenomenon
in all of our experiments. Therefore, we present from now on only results where the
sparse neighborhood constraint is in effect.

We note that for datasets with large clusters (e.g., in the Cora dataset some duplicate
sets are of size greater than 50), blocks are created using a large minsup and can satisfy
the NG constraint even for low thresholds. Therefore, the effect of the NG constraint
in such cases is moderate, as demonstrated in Figure 3c.

A trade-off of precision (PQ) and recall (PC), indicated as a peak in the F -
measure, is achieved for different thresholds in different datasets. It is 0.6 for the
Restaurants dataset (Figure 3a), 0.3 for the Census dataset (Figure 3b), and 0.2 for
Cora (Figure 3c). We conclude that different datasets require different thresholds in
order to achieve quality blocking. This threshold mainly depends on the data error
characteristics, which may be difficult to foresee. Therefore, instead, we configure the
neighborhood growth parameter p.

We also ran Algorithm 1 on the CDDB dataset. In Figure 4, we plot the required
number of comparisons needed to discover a particular number of duplicates using
varyingmin th values in the range 0.0-0.8. Eachmin th value induces a certain num-
ber of comparisons and identifies a certain number of duplicates. Generally speaking,
higher min th values lead to a smaller number of blocks and thus to a lower number
of comparisons. It is worth noting that the graph does not show a monotonic behavior.
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(a) Restaurants Dataset

(b) Census Dataset

(c) Cora Dataset

Figure 3: Real-world datasets

For example, 19,120 comparisons lead to the discovery of 270 duplicates while 37,245
lead to the discovery of 250 duplicates only. The reason for this nonmonotonic behav-
ior has to do with the initial setting of theminsup value. When a low threshold is used,
a false positive cluster may be created at an earlier iteration. As a result, the members
of this cluster are removed from the dataset and are not processed further (line 29 in
Algorithm 1), ultimately reducing the number of discovered duplicates.

We now compare the performance of Algorithm 1 with the results reported by
Draisbach and Naumann [20], using the sorted blocks algorithm. This algorithm is
based on the sorted neighborhood algorithm, [23, 1] whose performance is recorded as
inferior to other algorithms [3]. All-in-all, this dataset has 299 duplicates. To reach
the first 254 duplicates (85% of the duplicates), Algorithm 1 needed 1,945 compar-
isons and to reach 270 duplicates (90% of the duplicates), Algorithm 1 needed 19,120
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Figure 4: The CDDB dataset

comparisons. The sorted blocks algorithm required about 5 times more. The sorted
blocks algorithm managed to reach at most 277 duplicates (93%) using more than a
million comparisons while Algorithm 1 reached 290 duplicates (97%). Here, the cost
was high (1,367,178 comparisons). We note that for both algorithms there is an expo-
nential growth of effort in attempting to reach the final set of duplicates in this dataset.
Algorithm 1, however, managed these resources more effectively.

5.2.2. Synthetic datasets
We ran our algorithm on the synthetic datasets described in Section 5.1.1 with

prefix = 5. We experimented with similarity threshold values in the range of [0.1, 0.5]
for both clean and dirty datasets. We present results for datasets of 1, 000 and 100, 000
in figures 5 and 6, respectively.

In the clean datasets (Figure 5), precision, recall and F-measure remain almost
constant and above 0.92 for all min th values when using a neighborhood growth
parameter of p = 1.5.

The clean and dirty datasets exhibit a similar pattern except for recall that begins
to decline for the latter for thresholds higher than 0.4. This is an expected phenomena
because in dirty datasets duplicate tuples are less similar to one another.

Figure 7 compares the F-measure of Algorithm 1 with other blocking algorithms [3]
on synthetic datasets. For each dataset, we compare Algorithm 1 to the highest per-
forming algorithm on that dataset, in terms of its F-measure, as reported by Christen.
For the datasets of sizes 1K and 10K it is the q-gram based indexing approach (QGr)
[24]. For the clean 100K dataset it is the Blocking approach (Blo) [25]. For the dirty
100K dataset it is the Threshold Based Canopy Clustering algorithm (CaTh) [2].

Experiments analysis reported by Christen [3] indicates that the effectiveness of all
blocking approaches begins to decline with the size of the dataset (see Figure 7). There,
algorithms that employ fixed limits on the block sizes (e.g., fixed window size for the
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(a) Clean 1000

(b) Clean 100000

Figure 5: Performance: clean datasets

sorted neighborhood approach and fixed number of neighbors in the canopy clustering
approach) will experience a loss in recall as the dataset becomes larger. The reason for
this is that despite the fact that a larger number of tuples share the same blocking key,
due to the block size limitations they will be placed in different blocks leading to loss
in recall. With approaches that do not place such a limit, the increasing block sizes will
bring to a rise in the number of candidate tuples pairs, lowering precision.

Figure 7 shows that Algorithm 1 is more robust, maintaining a high level of F-
measure regardless of the dataset size. Such robustness can be attributed to the lack of
an upper limit on block size and therefore avoiding the decline in recall. In addition,
the MFI approach “automatically” adjusts the blocking key such that the created blocks
are small enough even when the dataset is large. If the dataset is large enough then
the minimum support may be achieved by tuples exhibiting a higher similarity than
possible with a smaller dataset. Therefore, for larger datasets Algorithm 1 yields a
larger number of appropriately sized blocks (depending on the minsup parameter) but
overall the precision and recall does not change much.
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(a) Dirty 1000

(b) Dirty 100000

Figure 6: Performance: dirty datasets

5.2.3. Scalability and runtime analysis
We experimented with different ways of reducing the number of MFIs, as discussed

in Section 4.6, and tested the algorithm for effectiveness and performance. The follow-
ing set of experiments was run on dirty synthetic datasets with sizes in the range of
10K-2000K, applying attribute prefix (see Section 5.1.2) and using 4-gram tokeniza-
tion (see Section 4.6).

Pruning frequent items allows a trade-off between efficiency and effectiveness (see
Section 4.6 for the detailed discussion). Figure 8 summarizes the results in terms of F-
measure (Figure 8a) and in terms of runtime (Figure 8b). The x-axis in both diagrams
represent the percentage of pruned items. The y-axis in Figure 8a shows the F-measure
achieved with datasets of varying sizes and the percentage of pruned items. The y-axis
in Figure 8b shows, on a logarithmic scale, the runtime, measured in seconds.

While improved runtime results in a reduced F-measure, we note that even a small
percentage of pruning, resulting in only a moderate decrease in F-measure, yields a
significant improvement in runtime. For example, the runtime for the algorithm on the
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Figure 7: Synthetic datasets: average and standard deviation of F-measure

1000K dataset drops from 6860 to 2860 seconds (reduction of 58%) by pruning only
0.01% of the most frequent items, at the cost of a slight drop of F-measure, from 0.905
to 0.893. It becomes evident from both diagrams that pruning up to 0.3% of the more
frequent items captures the majority of saving in runtime while maintaining a high F-
measure. Beyond 0.3%, no significant improvement of runtime is achieved and the
reduction in F-Measure becomes much more prominent.

To demonstrate the significant improvement in runtime, Figure 9a displays the run-
time as a function of the database size for three different pruning thresholds. The 0%
curve represents no pruning, while the other two curves represent pruning of 0.1% and
0.3%. As the dataset grows, the difference between the top curve and the lower two
curves becomes more prominent, demonstrating the practicality of pruning. Runtime
grows quadratically as a function of the database size for all levels of pruning (with R2

values for a quadratic trendline greater than 0.99) but with a very low coefficient for
the quadratic component (< 10−8). It is worth noting that the differences between the
coefficients of the three settings are extremely small, yet their impact is evident. Fig-
ure 9(b) shows the F-measure corresponding to pruning thresholds 0-0.3%. As can be
seen, the F-measure remains above 0.75 for all pruning thresholds, with a rather small
decrease in F-measure with 0.1% and 0.3% pruning levels.

Figure 10 illustrates the tradeoff between runtime and F-measure for datasets of
size 500K,1000K, and 2000K. Each point in the graph represents an experiment with
a different pruning level. For all three datasets, there is a range of less than 2000 sec-
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(a) % pruned vs. F-measure

(b) % pruned vs. runtime (logarithmic scale)

Figure 8: Effectiveness and performance for the dirty synthetic datasets

onds where additional investment of time yields significantly higher F-measure levels.
After that, less pruning (and therefore more time invested) does not make a significant
difference. Therefore, we can conclude that low pruning levels (≤ 0.1%) serve as a
good tradeoff level.

5.2.4. Combined runtime analysis
The overall runtime of an entity resolution process depends largely on the number

of tuple pairs generated by the blocking stage and the comparisons performed in the
comparison stage. Therefore, investing more time in the blocking stage may lead to the
generation of higher quality blocks, with a lower number of candidate pairs, possibly
making the overall process more efficient. In this section we provide a comparison of
the combined blocking and comparison runtime performance. The main conclusion
we can draw here is that Algorithm 1 is mostly comparable with the runtime results
reported in the literature while providing an easy-to-use method that yields high quality
blocks, which in turn can translate to high quality resolved databases.
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(a) % pruned vs. runtime

(b) % pruned vs. F-measure

Figure 9: Effectiveness and performance for low pruning thresholds

We applied five different blocking techniques on two datasets. The Restaurants
dataset as a representative of a real-world dataset and a 10K synthetic dirty dataset,
which was used in our experiments before (see Section 5.2.2). All experiments were
conducted using FEBRL [15] and followed the guidelines provided by Christen [3]. In
particular, we have chosen a rather small synthetic dataset to allow most of the blocking
algorithms in FEBRL to run on it.

Algorithm 1 does not require a-priori key specifications. For the other blocking
algorithms in the experiment we used, for the Restaurants dataset a single blocking key
combined of the first four characters of the city attribute concatenated with the first four
characters of the type attribute. In the comparison stage we used the name, address,
city and type fields using standard string comparison functions edit distance, Jaro and
Winkler. In the classification stage we used the Fellengi Sunter [25] approach. As
expected, the majority of the runtime was taken by the comparison stage.

For the synthetic dataset we defined three different settings, marked asBK1, BK2,
andBK3 in Table 6. In the first setting, denotedBK1, we created a single index whose
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Figure 10: F-measure vs. runtime (sec)

blocking key is the surname attribute encoded in double metaphone. In the second set-
ting, denoted BK2, we created a single index whose blocking key is the first three
characters from the soc sec id attribute concatenated to the first three characters of the
phone attribute. In the third setting, denoted BK3, we created two indexes, the first
corresponds to the surname attribute, and the second to the suburb attribute concate-
nated with the postcode attribute. All values were encoded in double-metaphone.

In the comparison stage we used the given name, surname, address 1, address 2,
suburb, state and soc sec id attributes using standard string comparison functions [26].
In the classification stage we used the Fellengi Sunter [25] approach. As expected, the
majority of the runtime was taken by the comparison stage. Table 6 presents the overall
runtimes of the various blocking techniques in these settings.

Blocking technique Parameters # candidate pairs runtime (sec)
Blocking 7259 6.73

Suffix Array [22] min length = 3,
max block size = 6,
Suffix Only

481 0.891

Canopy Index [2] TF-IDF,
Global thresholds: 0.8,0.9
3-grams

7259 7.48

Sorting Index [1] window=5 24,196 23.44
Sorting Index [1] window=3 16,765 15.61

String-Map Index [27] Global thresholds: 0.8,0.9,
Grid Size = 100,
mapping dimension=15,
Similarity function=largest
common subsequence

7,234 8.08

Algorithm 1 p = 2,
minsup = 2,
min th = 0.1

246 4.23

Table 5: Blocking and comparison stages on the Restaurants dataset
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The parameter setting and runtime results of the blocking and comparison stages for
the Restaurants dataset appear in Table 5. The table presents the number of candidate
pairs created by the respective blocking algorithms and the total combined runtime of
the blocking and comparison stages. The results show that the time invested in blocking
by Algorithm 1 has paid off by yielding a smaller set of candidate pairs. Algorithm 1 is
ranked here first in terms of number of candidate pairs and second only to Suffix Array
in terms of combined runtime. It is also worth noting that Figure 2 shows a statistically
significant improvement in F-Measure of Algorithm 1 over Suffix Array.

Blocking technique Parameters # candidate pairs runtime (sec)
BK1 / BK2 / BK3 BK1 / BK2 / BK3

Blocking 157, 579 / 15, 848 / 240, 453 55 / 6.44 / 86
Suffix Array [22] min length = 3,

max block size = 10,
Suffix Only

9, 763 / 17, 303 / 18, 833 4.03 / 6.34 / 7.27

Canopy Index [2] TF-IDF,
Global thresholds: 0.8,0.9,
3-grams

157, 583 / 40, 857 / 240, 459 52 / 16.49 / 87

Sorting Index [1] window=5 271, 479 / 94, 487 / 509, 594 102 / 37 / 205
Sorting Index [1] window=3 212, 205 / 58, 078 / 376, 990 78 / 23.11 / 151

String-Map Index [27] Global thresholds: 0.8,0.9,
Grid Size = 100,
mapping dimension=15,
Similarity function=largest
common subsequence

172, 492 / 21, 509 / 270, 165 60 / 7.88 / 97

Algorithm 1 p = 2.5,
minsup = 8, 6, 4, 3, 2,
min th = 0.1

10, 011 16

Table 6: Blocking and comparison stages on the synthetic dirty 10K dataset

The runtime results of the blocking and comparison phases for the synthetic dataset
appear in Table 6, showing similar behavior as in Table 5. We observe that choosing
an appropriate blocking key is critical not only in order to achieve high effectiveness,
but also for generating a small number of comparisons. Again, Algorithm 1 is shown
to be at the same scale in terms of combined runtime as the other blocking algorithms.

6. Related Work

Several surveys were published in the general area of entity resolution. Elma-
garmid et al. provided a comprehensive survey covering the complete Deduplication
process [28]. Christen’s survey is dedicated to popular blocking methods, [3] including
the suffix array blocking [22], the threshold-based canopy clustering [2], the q-gram
based indexing approach [24], the blocking approach [25], the sorted neighborhood
method [23], and others. The survey reports on the effectiveness of these methods.
Our empirical evaluation follows closely the empirical evaluation proposed there. It
compares these blocking methods, over several settings. The datasets used there are
publically available for download or can be generated by using FEBRL [15].

All blocking techniques described in this section require the definition of a blocking
key, which is orthogonal to the selection of the blocking algorithm. A blocking key is a
carefully chosen set of attributes whose values are used to separate tuples into blocks.
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Blocking key composition requires knowledge of the distribution and error characteris-
tics of the data, and is therefore hard to configure. Bilenko proposed a learning method
to automatically select the best blocking key, using an approximation to the set cover
problem [29]. Michelson and Knoblock [30] employ predicate-based formulations of
learnable blocking functions for the same purpose. Our proposed algorithm, on the
other hand, makes do with the need to configure a blocking key. Instead, the algo-
rithm allows all attribute values to participate in the clustering criteria, in effect, using
multiple keys instead of a single, global one.

Some works suggested the use of multiple passes of a blocking algorithm, each time
with a different blocking key [16, 31, 20]. In these works, just like in the single pass
algorithms, the blocking keys were designed by domain experts while the proposed
algorithm relieves the user from this difficult task. In addition, the number of selected
keys is usually small. In our proposed approach the algorithm chooses the best keys
to be used from the set of all possible keys. Another main difference between the
two approaches has to do with the relationships between blocks of different passes.
Multipass algorithms performs independent runs for different blocking keys. As a
result, a tuple may participate in many blocks, increasing the load for later stages of
the process. In our approach, a tuple is restricted to participate in a limited number of
comparisons using the neighborhood growth constraint.

All blocking techniques but Standard blocking [25] create overlapping blocks. This
means that a tuple may belong to more than a single block and will ultimately be
compared with all tuples which share a block with it. For example, Canopies [2] are
overlapping blocks created by applying a cheap comparison metric to tuples. Canopy
clusters are generated by randomly selecting a tuple from a pool, and adding close
tuples to the cluster. The proposed algorithm also creates overlapping blocks using
multiple passes, as discussed above.

Most blocking methods are implemented using an inverted index structure [3],
where the blocking key values are transformed to a set of keys in the index structure,
later used to extract blocks. In Q-gram indexing, also known as fuzzy blocking [15],
the blocking key values are converted into a list of q-grams that are concatenated and
used as keys in an inverted index. In suffix array based blocking [22] an inverted index
is built from the blocking key values and their suffixes. The String-Map based index-
ing technique [27] builds a d-dimensional grid-based inverted index from a mapping
of blocking key values to points in a multidimensional space. Using itemset mining,
attribute-specific indexing or comparison is no longer needed.

Shu et al. propose a divisive hierarchical clustering algorithm that is based on spec-
tral clustering [32]. After the clustering phase, neighboring clusters in a bipartition tree
are searched for locating additional candidate tuple pairs. The algorithm performs
slightly better than the Canopy Clustering method on relatively clean datasets and per-
forms worse than the Canopy Clustering method on dirty datasets. We did not compare
directly with this algorithm. However, all of our experiments demonstrate that the
proposed algorithm is significantly superior to the Canopy Clustering algorithm on all
types of datasets (real-world, synthetic, clean, and dirty).

Many of the blocking methods constrain the block size. This is done to avoid the
cost of having to compare many candidate pairs whenever large blocks are generated.
This constraint may be difficult to come-by and as opposed to our proposed approach
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has no relation to the expected number of duplicates. To the best of our knowledge, our
work is the first to utilize the expected number of duplicates, which in many scenarios
is known in advance, to set a meaningful constraint on the number of comparisons.

Entity resolution can benefit from the use of semantic information. Yakout et
al. [33] propose to use the entity’s behavior against a data source by analyzing pat-
terns for this entity in a transaction log. This additional data is an important source
of information, especially when user-profile information is inaccurate or unavailable.
Relational entity resolution [34] makes use of relational information between entities
in order to enhance the effectiveness of the entity resolution process. In a blocking
algorithm for such a setting, entities are placed in the same block, not only based on
their similarity, but also due to their relationships. The proposed algorithm makes use
of relational information, assigning different ids to identical q-grams, if their origin is
in different attributes. As part of future work we plan to investigate additional ways to
enhance our approach to deal with relational information as well.

Methods for improving the efficiency of the entity resolution process involve paral-
lelization using Map Reduce [35, 36]. Kolb et al. [35] focus on strategies for similarity
computation and classifier application on the cartesian product of two sources. Kirsten
et al. [36] apply blocking as part of the partitioning strategies for parallelization. We in-
tend to research parallelization as a tool for improving performance in future research.

The measures we used for comparing results to a golden standard are the popular
recall, precision, and F-measure. Other measures also exist. For example, Menestrina
et al. [37] propose the Generalized Merge Distance (GMD), using the operations of
cluster splits and merges to measure distance among clusters.

7. Conclusions

We presented an effective and efficient blocking algorithm that eliminates the need
to construct a complex blocking key and reduces the need for complex user-based tun-
ing. The algorithm is based on mining maximal frequent itemsets. A tuple is broken
into a sequence of items, where each item is part of an attribute value. The algorithm
avoids performing attribute specific indexing or comparison, and therefore may per-
form well even in the absence of domain expert knowledge. The proposed approach
discovers clusters of similar tuples under different sets of attributes (blocking keys)
and therefore achieves higher recall and precision. We exhibited the effectiveness and
efficiency of the algorithm on both real-world and synthetic datasets and compared it
to other known blocking methods, showing it to be more effective.

In addition to block creation for the comparison and classification stages, the pro-
posed algorithm provides insights as to the set of attributes that should be utilized in
these stages. As such, we believe the algorithm benefit goes beyond that of a common
blocking algorithm. We intend to investigate the impact of the algorithm outcome on
the comparison and classification stages as part of our future work. In addition, we in-
tend to investigate how to extend this approach to relational blocking. Finally, we also
intend to explore how to extend the approach in scenarios where a crisp correspondence
between the attributes is unavailable or when it is probabilistic [38].
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