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Abstract. We present and evaluate the power of a new framework for weighted
model counting and inference in graphical models, based on exploiting the topol-
ogy of the junction tree representing the formula. The proposed approach uses the
junction tree topology in order to craft a reduced set of partial assignments that
are guaranteed to decompose the formula. We show that taking advantage of the
junction tree structure, along with existing optimization methods borrowed from
the CNF-SAT domain, can translate into significant time savings for weighted
model counting algorithms.

1 Introduction

Weighted Model Counting (WMC) on a propositional knowledge base in Conjunctive
Normal Form (CNF) is an effective and popular approach to solve problems of exact
probabilistic inference [23, 1, 4], conformant planning [11], and the study of hard com-
binatorial problems [12] by taking advantage of local structures. WMC is based on the
model counting or #SAT problem [12], where the objective is to count the number of
assignments that satisfy the propositional formula. WMC generalizes model counting
by assigning a weight to each literal, and computing the weighted sum of satisfying
assignments.

Model counting (and WMC) is #P-hard in general [25]. However, much work is
devoted to create methods that capitalize on local structure in the form of determinism
and context specific independence to enable significant speedups compared to classic
inference approaches [9, 18].

In this work we continue this line of research and propose a novel approach for per-
forming WMC that is based on message passing in junction trees. We observe that the
topology of a formula’s junction tree reveals structure that can be utilized for enhancing
the performance of WMC. The algorithm we propose in this work generates compact
factors that contain a small set of mutual exclusive and exhaustive partial assignments
that are guaranteed to decompose the formula.

We evaluate the proposed approach on three benchmarks, comparing it to c2d [6],
a leading compiler for WMC. The empirical analysis leads to interesting observations
about the pros and cons of each of the methods.

The rest of the paper is organized as follows. Junction trees are introduced in Sec. 2
followed by the introduction of CNF-trees and their role in modeling the underlying
conditional independences between formula variables (Section 3). Next, we outline the
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main idea of the paper, where formula decomposition is performed by partial assign-
ments (Sec. 4). We show how to generate the reduced set of partial assignments (mod-
eled as tree-CPTs) in Sec. 5. Sec. 6 presents the empirical evaluation. We conclude with
a discussion of related work (Sec. 7) and concluding remarks (Sec. 8).

2 Background: The Junction Tree Algorithm

In what follows, we denote variables in upper case letters (e.g., X) and their instantia-
tions in lower case (e.g., x). Sets of variables are denoted using bold upper case letters
(e.g., X) and their instantiations in bold lower case letters (e.g., x).

A Probabilistic Graphical Model (PGM) is a graph G(V,E) in which nodes repre-
sent random variables X = {Xi : i ∈ V }, and edges represent direct dependencies be-
tween them. The graphical model contains a set of discrete functions F, termed factors,
that are defined over a subset of its variables. Factors are typically represented as tables,
indexed by variable instantiations. Formally, a factor is a function F (Y) : y → [0, 1]
where y is an instantiation of Y. The probability distribution defined by the graphical
model is Pr(X) = 1

Z
∏
Fi∈F Fi(Xi) where Xi ⊆ X, and Z , termed partition function,

normalizes the probability to sum to one.
One of the prominent methods for performing exact probabilistic inference in graph-

ical models is the Junction Tree algorithm [18, 13]. Let G(X, E) be a PGM. A Junction
Tree for G is a tree T (C), defined over a set of nodes C that satisfy the following prop-
erties:

1. Each node Ci ∈ C is associated with a set of variables Yi ⊆ X from the PGM and
a factor Gi(Yi) (not to be confused with the PGM factors denoted Fi).

2. For each factor Fk(Xk) in the PGM, there exists a tree node Ci ∈ C such that
Xk ⊆ Yi.

3. If nodes Ci, Cj ∈ C are both associated with a variable X ∈ X, then every node on
the path connecting them in T is also associated with X .

The edges of the junction tree are labeled with the intersection of their endpoints. A
separator, Si,j , connects nodes Ci and Cj and is referred to as a separator node.

Inference in junction trees is performed by passing messages between adjacent
clique nodes. Evidence, E = e is materialized by eliminating inconsistent factor entries.
The message passing is carried out in two phases, inward - from the leaves towards the
root, and outward - from the root towards the leaves. A node Ci sends a message to its
neighbor, Cj , only after it has received messages from the rest of its neighbors Nbri \
Cj . The message µi→j(Sij) from node Ci to Cj is a tabular factor defined over their
intersection, Sij = Yi ∩ Yj , as follows: µi→j(Sij) =

∑
Yi\Sij

Gi
∏
k∈Nbri\Cj

µk→i.
Once message propagation completes, each tree-node factor holds the marginal distri-
bution i.e., Gi(Yi) = Pr(Yi, e).

The width of a junction tree is the size of its largest node minus one. The treewidth
tw(G) of a graph G is the minimum width among all possible junction trees for G. In
general, minimizing the graph width is known to be NP-complete. Since the junction-
tree algorithm relies on tabular factors for performing the marginalization operation
required for message-passing, the runtime of the algorithm depends, exponentially, on
its width. Therefore, bounded width implies tractability in graphical models.
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3 CNF-trees: Junction Trees for CNFs

In this section we introduce common notation and define CNF-trees, which are special-
ized junction-trees for Boolean formulas in CNF. The proposed algorithm, described in
Section 4.1, operates over this structure.

A literal l of a binary variable X is either a variable or its negation, which are
denoted by x, x̄, respectively. The variable corresponding to a literal l is denoted by
var(l). Each literal, l, is associated with a weight pl ∈ [0, 1]. An assignment is a func-
tion γ : V → {0, 1} and will be denoted by its set literals γ = {l1, l2, ..., lk}. An
assignment’s weight is defined as the product of its literal weights. The projection of an
assignment γ over a subset of its vars Y ⊆ var(γ) is denoted γ|Y. For example, given
the assignment γ = {x1, x̄2, x3}, then γ|{X2, X3} = {x̄2, x3}.

A Boolean formula f over variables X maps each instantiation x to either true or
false. f(X) is in Conjunctive Normal Form (CNF), constructed from a conjunction of
clauses, each a disjunction of literals. We denote by φ1, φ2, .., φn the set of unique
clauses in f , where every φi represents a set of literals. The variables in a clause φi are
denoted var(φi), and the clauses of f that contain a literal l are denoted clauses(l). We
assume that the formula f is simplified, meaning, for every pair of clauses φi, φj ∈ f ,
φi * φj . Conditioning a CNF formula f on literal l, denoted f |l, consists of removing
the literal l̄ from all clauses, and dropping the clauses that contain l. Conditioning a
formula on an assignment, or a set of literals γ = {l1, l2, ..., lk}, denoted f |γ, amounts
to conditioning it on every literal l ∈ γ. We say that an assignment γ is consistent if
f |γ 6= 0. We say that a variable X affects the formula’s outcome if f |x 6= f |x̄. We
denote by var(f) the set of variables that affect the formula. A pair of formulae f1, f2
are disjoint if var(f1)∩ var(f2) = ∅. The weighted model count or probability that f is
satisfied is denoted by Pr(f) and the two terms may be used interchangeably.

Let Gf (X, E) denote the primal graph of f(X), where nodes represent variables
and there is an edge between pairs of variables that belong to a common clause.

Definition 1 (CNF-tree). Let f(X) be a Boolean formula in CNF with primal graph
Gf (X, E). A CNF-tree for f is a rooted junction tree, Tr(C), for Gf (X, E) where each
clause φi ∈ f is represented as a leaf node with factor Fφi(y), Y ⊆ var(φi):

Fφi(y) =


0 if φi|y = 0

1 if φi|y = 1

1−
∏
l∈φi|y Pr(l̄) otherwise

(1)

According to the junction tree properties, each clause, φi ∈ f , is associated with a
node Ci ∈ C such that var(φi) ⊆ Xi. This node-clause relationship is reflected in the
tree by attaching a leaf, representing the clause, to its associated tree-node. For example,
consider the CNF formula, its junction and CNF-trees in Fig. 1. The shaded leaf nodes
represent clauses.

Configuring the leaf-node factors to return the probability that their respective clause
is satisfied is equivalent to introducing evidence which prohibits assignments that fal-
sify the formula. Thereby, the weighted model count of f can be performed by message-
passing on the CNF-tree.
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In the general setting, a separator set Si,j = Xi ∩ Xj , between junction tree nodes
Ci, Cj , enables inducing independence between variables on different sides of the edge
only when all of the variables in Si,j were assigned a value [8]. We observe, however,
that in CNF-trees this requirement may be too strict as illustrated in Example 1.

(a) f (b) Junction tree for f (c) CNF-tree for f

Fig. 1: A formula, f = ∧7i=1φi, and its corresponding junction and CNF trees

Example 1. Consider the CNF-tree in Fig. 1. The partial assignment γ1 = {x1} renders
the disjoint variable-sets on the two sides of the edge, (C0, C1) (marked) independent,
even though variables X2 and X4 remain unassigned. The reason for this is that given
x1, the original formula is reduced to f |x1 = φ6︸︷︷︸

f1

φ5φ7︸ ︷︷ ︸
f2

. Variables X3, X6, and X7

become irrelevant to f ’s outcome following the partial assignment x1, and can be dis-
regarded. The variables that belong to the disjoint components in the reduced formula
f |x1, namely var(f1) and var(f2), are conditionally independent given x1.

Example 1 motivates the search of a set of partial assignments to the factors of
a CNF-tree that will render their subtrees independent. Partial, rather than complete
assignments, may reduce factor sizes, enabling more efficient inference.

4 Decomposition by Partial Assignments

The next two sections lay out the main contribution of the paper. We first explain
how the CNF-tree structure can be utilized for generating tree-Conditional-Probability-
Tables (tree-CPTs) [2] consisting of a small set of mutual exclusive and exhaustive
partial assignments, which are guaranteed to decompose a formula. We then define
tree-CPT cardinality and suggest optimizations for size reduction. Tree-CPTs, intro-
duced in [2], is a representation which captures Context-Specific-Independence which
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(a) F0 (b) F ′
0

Fig. 2: Two possible tree-CPTs for root-node C0 (X0 = {X1, X2, X4, X5}) of the junc-
tion tree in Fig. 1c.

can be exploited for probabilistic inference. We adopt this structure in order to represent
partial assignments of CNF-tree-node members, but give it a different semantics.

Let Tr(C) be a CNF-tree rooted at node r. For each tree node Ci ∈ C, Fi(Xi) is
the factor associated with this node, Ti is the subtree rooted at Ci, and fi is the subfor-
mula induced by the clauses in this subtree. For example, the formulae represented by
subtrees T1, T2 rooted at nodes C1, C2, respectively, in Fig. 1c are f1 = φ1φ4φ6, and
f2 = φ2φ5φ7. The children of tree-node Ci are denoted chi.

Definition 2. Let Tr(C) be a CNF-tree rooted at node r and Ci ∈ C a node in Tr with
chi = {C1, C2, ..., Cm}. Let Y = y be a partial assignment to Xi. y is called a valid
(partial) assignment to Xi if the following two conditions are satisfied:

1. Y = y is consistent (fi|y 6= 0)
2. fi|y is decomposed to sub-formulas f1|y, f2|y, ..., fm|y, which are pairwise disjoint.

Our goal is to generate the smallest factor for each CNF-tree node. Namely, per
each node, we would like to identify the smallest set of mutual exclusive and exhaus-
tive valid partial assignments (Def. 2). The factors will be represented by tree-CPTs [2]
where non-terminal vertices represent variables and terminal vertices correspond to the
assignment defined by the path from the root. The variable corresponding to a vertex
v in the tree-CPT is denoted var(v), its parent p(v), and its right and left children cor-
responding to assignment var(v) = 1/0 as vr/vl, respectively. The set of assignments
represented by terminal nodes in Fi will be denoted γi, their cardinality ki = |γi|, and
for each γ ∈ γi, the assignment’s marginal probability will be denoted Pr(γ). For each
vertex v in the tree-CPT, we denote the path from the root to v, and the assignment it
dictates, by Pv . The assignment Pv will be referred to as v’s context. We say that literal
l ∈ Pv if l|Pv = 1.

Example 2. An example of two possible tree-CPTs for root-node C0 in the CNF-tree of
Fig. 1c appear in Fig. 2. Note the terminal vertex in Fig. 2a that represents assignment
γ2 = {x̄2, x1}. The partial assignment γ2 induces subformulae f1|γ2 = φ6, f2|γ2 =
φ5φ7, and f3|γ2 = ∅, which correspond to subtrees T1, T2, T3, respectively. Given
assignment γ2, these subformulae are consistent and pairwise disjoint, e.g., var(f1|γ2)∩
var(f2|γ2) = ∅, thus the partial assignment γ2 is valid.
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Algorithm 1: MP(Tr, e), returns Pr(fr|e)

1 if r is a leaf-node then
2 return Fr(e) // By eq. 1

3 if cache(fr|e) 6= nil then
4 return cache(fr|e)

5 Pr(fr|e)← 0.0 // init the return value
6 while γ ← nextValid(γ, fr|e,Xi \ var(e)) 6= nil do
7 Pr(fr|eγ)←

∏
l∈γ pl // assignment weight

8 foreach node n ∈ chr do
9 Pr(fn|eγ)← MP(Tn, eγ) // recurse

10 Pr(fr|eγ)← Pr(fr|eγ) · Pr(fn|eγ)// Thm. 1

11 Pr(fr|e)← Pr(fr|e) + Pr(fr|eγ) // Thm. 1

12 cache(fr|e)← Pr(fr|e)
13 return Pr(fr|e)

4.1 Message-Passing in CNF-trees

The procedure for performing WMC over CNF-trees is presented in Alg. 1, taking a
CNF-tree Tr, which represents fr, and a partial (possibly empty) assignment e, and
returning the probability that fr|e is satisfied. The algorithm avoids repeated compu-
tation of equivalent CNFs using a cache whose key represents the CNF. The function
nextValid (Line 6) retrieves the next valid assignment to process. We detail the gen-
eration of valid assignments in Section 5.

Thm. 1 establishes the soundness of the algorithm. Its proof is inductive and follows
from the validity (Def. 2) of the tree-CPT assignments. Due to space constraints proofs
are omitted.

Theorem 1. Let Tr be a CNF-tree representing CNF fr. The call MP(Tr, e) returns
Pr(fr|e).

5 Generating small tree-CPTs

Alg. 1 motivates the search for small tree-CPTs. Each tree-CPT internal vertex induces
an instantiation of the variable it represents. Therefore, we begin by observing the con-
ditions that forgo the requirement to instantiate a variable.

Definition 3 (safe variable). Let Ci be a CNF-tree node with arguments Xi, and let γ
be an assignment. A variable X ∈ Xi is called safe if there is at most a single node,
Cj ∈ chi, such that X ∈ var(fj |γ). The set of variables in Xi that are safe under
assignment γ are denoted safei(γ).

We first note that by Def. 3, instantiated variables are safe because they cannot
appear in any induced sub-formula associated with a node’s subtrees.

To relate safe variables to compact CPT-trees let Fi(Xi) be Ci’s CPT-tree, and let
vertex v ∈ Fi have context Pv . If X ∈ safei(Pv), and Pv is consistent (recall, fi|Pv 6=
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0) then, by Def. 3, there is a valid assignment that containsPv , but notX . Furthermore, a
context Pv for which all the node arguments are safe, is a valid assignment by definition.

The variation between tree-CPTs, and hence the efficiency of the WMC algorithm,
stems from the different ordering of variable instantiation (see Figure 2). Def. 4 gives
the ordering constraints between the arguments of a node Ci, which will be used to
derive its tree-CPT.

Definition 4 (Conditioning graph). The conditioning graph of a CNF-tree-node Ci is
a directed graph Di(Li, Ei), where Li = {x, x̄ : X ∈ Xi} is the set of literals of Xi.
There is an edge (l1, l2) ∈ Ei if ∃φ1, φ2 ∈ fi such that

1. φ1, φ2 ∈ clausesi(var(l1)) \ clausesi(l2)
2. Node Ci is their Least Common Ancestor (LCA) in the CNF-tree.

The compliment of Di is denoted D̄i.

The intuition behind the conditioning graph becomes apparent when looking at ab-
sent edges, or at the conditioning-graph’s compliment, D̄i. If, for example, x1 → x2 ∈
D̄i, that is, x1 → x2 /∈ Di, then, by Def. 4, any two clauses that contain X1 (i.e., x1
or x̄1), but not the literal x2, are confined to the same subtree of node Ci. Practically,
this means that given an assignment in which x2 = 1, the set of unsatisfied clauses con-
taining variable X1 are confined to (at most) a single subformula represented by one
of Ci’s subtrees. In other words, variable X1 is safe (Def. 3) for any assignment where
x2 is set. Essentially, given two literals, l1 and l2, the conditioning graph answers the
following question: “Given l2 = 1 is var(l1) safe ?”. If l1 → l2 ∈ D̄i then the answer
is affirmative, otherwise negative.

We also note the following about the conditioning graph and its compliment. First,
for each variable X ∈ Xi, outi(x) = outi(x̄) because the out-edges are determined by
the existence of a variable (i.e., literal x or x̄) in the clauses of Def. 4. Also, since as-
signing a variable makes it safe, then neither the conditioning graph nor its compliment
contain edges from a literal to its compliment or self-loops.

Example 3. Fig. 3 presents the conditioning graph of the root C0 of the CNF-tree in
Fig. 1c. The edge x5 → x2 (x̄5 → x2) is due to clauses φ7 and φ3. Both clauses
contain x5 but not x2, and their least common ancestor in the CNF-tree is C0.

Fig. 3: The Conditioning Graph, D0 of node C0 of the CNF-tree in Fig. 1c

We now characterize a subclass of safe variables in context Pv (Def. 3), denoted
Yv , using the conditioning graph.
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Definition 5. Let Ci denote a node in a rooted CNF-tree with conditioning graph Di,
and tree-CPT Fi(Xi). Let v be a vertex in the tree-CPT Fi, with context Pv , then:

Yv = {X ∈ Xi : ∃l ∈ Pv : x→ l ∈ D̄i}

Theorem 2. Let v be a vertex in Fi with context Pv . Then Yv ⊆ safei(v).

Thm. 2 characterizes the set of arguments whose clauses are confined to a single
subformula induced by the subtrees of nodeCi, given the assignment dictated by Pv . By
Thm. 2,X will not require instantiation in order to extend Pv to a valid assignment. The
importance of the variable-set Yv stems from the fact that it can be statically identified
by considering only the structure of the CNF-tree.

The complement of the variable set Yv , described in Def. 5, has incoming edges to
all of the literals set by the assignment Pv . We define this set of variables, Zv , recur-
sively as follows.

Definition 6. Let v be a vertex in CPT-treeFi, with parent p(v), and variable var(p(v)).
The variable-set Zv is:

Zv =


Xi if Pv = ∅ or v is the root
Zp(v) ∩ ini(var(p(v))) if var(p(v)) = 1

Zp(v) ∩ ini(var(p(v))) if var(p(v)) = 0

According to Def. 5 and 6, we have that Yv ∩ Zv = ∅, and for every vertex v ∈ Fi,
Xi = Yv ∪ Zv ∪ var(Pv).

Example 4. Let v refer to the right child of X2 in the tree-CPT of Fig. 2a (var(v) =
X5). Then Zv = Zp(v) ∩ in0(x2) = {x1, x2, x4, x5} ∩ {x5} = {x5}. In this case
variableX5 requires instantiation in context x2 in order to extend the partial assignment
{x2} to one that is valid.

5.1 Tree-CPT cardinality

To express the size of a node’s tree-CPT Fi(Xi) with children chi and conditioning
graph Di we denote (with a slight abuse of notation) the variable associated with each
tree-CPT vertex v, var(v) = V , and its literals v and v̄ respectively. T : Zv → N maps
Zv to the number of valid assignments in the subtree rooted at vertex v:

T (Zv) =

{
1 if Zv = ∅
T (Zv ∩ ini(v)) + T (Zv ∩ ini(v̄)) o.w

(2)

This expression considers only the variable set Zv because by Thm. 2, the members
of the compliment set, Yv , are safe (Def. 3), and thus do not require instantiation.

When Zv = ∅ then no variable requires instantiation, and a single terminal node
can represent the valid assignment. Otherwise, the total size of the tree-CPT rooted at
vertex v is determined by the size of the tree-CPTs rooted at its left and right children
vl, vr respectively. By Def. 6, Zvl = Zv ∩ ini(v̄) and Zvr = Zv ∩ ini(v). It is easy to
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see that repeated expansion of Eq. 2 can lead to the known exponential bound for the
number of valid assignments in the tree-CPT, whenever for each tree-CPT vertex v:

Zv ∩ ini(v) = Zv ∩ ini(v̄) = Xi \ {var(Pv) ∪ {V }}

That is, in the worst case the complexity of Algorithm 1 is exponential in the size
of the largest node in the CNF-tree, or the width of the formula’s primal graph. In
Section 6 we show that despite this worse-case behavior, and with the assistance of the
optimization discussed next, Algorithm 1 performs well on known benchmarks.

5.2 Optimizations for generating small tree-CPTs

We broadly address two types of optimizations that we apply to Alg. 1, aimed at min-
imizing the size of the tree-CPTs. The first is a heuristic that selects the next node-
member to assign, using the analysis in Sec. 5.1. The second is Unit Propagation and
conflict directed clause learning, adapted from the CNF-SAT domain.

A tree-CPT can be viewed as a binary decision tree where terminal nodes identify
valid assignments. Constructing an optimal decision tree, one with fewest nodes, is
generally an NP-hard problem [16]. We apply a heuristic strategy that, at each stage,
selects the variable that minimizes the cardinality of the variable-set that is common to
its left and right tree-CPTs. Formally:

arg min
v

(|Zv ∩ ini(v)) ∩ (Zv ∩ ini(v̄)|)

Ties may be broken by selecting the variable that further minimizes the set of unsafe
variables at either of its sub trees. That is:

arg min
v

[max (|ini(v) ∩ Zv|, |ini(v̄) ∩ Zv|)]

Unit Propagation (UP) refers to the process of iteratively assigning literals of unit
clauses until none are left. It is part of both DPLL-based model counters [23, 24] and
compilers that generate d-DNNF circuits [6, 21]. Specifically, if φ = {l} is a unit clause
of a CNF formula f , then the UP process deletes all occurrences of l̄, and all clauses
containing l, which are now satisfied. Each valid assignment generated by Alg. 1 is
extended by applying unit propagation. That is, the valid assignments are guaranteed to
decompose the formula and ensure that no unit clauses are present. Unit propagation is
applied after every variable assignment during the tree-CPT construction.

If UP results in a conflict, then a new clause is learned by applying the first Unique
Implication Point schema [20]. The newly learned clause is added to the subformula
being processed, fi. We note that the learned clauses are used only during unit prop-
agation, in order to detect conflicts early. They are not represented as leaves in the
CNF-tree, and are not considered during caching. Also, since different nodes repre-
sent different subformulas, then each CNF-tree node holds its own local set of conflict
clauses.
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6 Empirical Evaluation

We evaluate the proposed approach on a set of benchmark networks from the UAI
probabilistic inference challenge.1 We compare our results with the C2D compiler [6],
part of the Ace system.2 Besides evaluating the efficiency of the proposed approach, we
discuss the properties of networks that benefit from it. The experimental setup is given
in Section 6.1, followed by results and analysis in Section 6.2. We implemented our
algorithm in C++ 3 and carried out the experiments on a 2.33GHz quad-core AMD64
with 8GB of RAM running CentOS Linux 6.6. Individual runs were limited to a 2000-
second time-out.

6.1 Overview and Methodology

The compilation process of C2D is guided by a binary tree, termed dtree whose leaves
are associated with the clauses of f . The dtree determines the instantiation order mate-
rialized in the d-DNNF [5, 6]. Fig. 4 depicts a dtree of the CNF of Fig. 1a. Each internal
node, T , is associated with a variable-set, called separator [12], which is the variable-
set common to the left and right subtrees of the node. Once these variables have been
assigned, the formulae represented by the two subtrees become disjoint. Darwiche [6]
observed that there is no need to set all variables in the dtree-node T in order to de-
compose the formula. That is, after setting a subset of the dtree-node variables, enough
clauses may become satisfied such that the rest of the T ’s variables are no longer shared
between the formulas represented by its left and right children. For this reason the C2D
compiler recomputes the separator for T each time a variable of T is decided [6]. Within
each separator, the C2D compiler chooses the variable that appears in the largest number
of unsatisfied clauses.

Darwiche shows that the clusters of a dtree satisfy the junction-tree property ([8],
Thm. 9.10). That is, the maximal clusters of a dtree can be connected such that they
constitute a junction-tree. Once the junction-tree is created, we can attach the clauses as
leaf nodes to obtain the CNF-tree. Applying our algorithm to a junction tree correspond-
ing to the dtree generated by the C2D compiler, enables comparing the two approaches
on an even ground, although our proposed approach is not limited to binary junction
trees. Furthermore, we can gain insight into the types of networks that benefit from our
proposed approach, which requires more analysis at each junction tree node.

There is a wide range of settings for C2D, and in particular for generating the dtree.
We experimented with the default provided by Ace, termed dtBnMinfill. This op-
tion instructs the program to generate a dtree for the original Bayesian network using
the minfill heuristic [17], which is widely known for generating small induced width
elimination orders. Each leaf in the resulting dtree corresponds to one of the network
CPTs. Then, each leaf is replaced with the dtree that represents the corresponding CPT.

6.2 Experimental results

We report the results obtained for Grid, Promedas, and Segmentation networks. The
evaluation is presented using scatter plots. Each instance is represented as a point in

1 Available online at http://www.cs.huji.ac.il/project/PASCAL/showNet.php
2 Available online at http://reasoning.cs.ucla.edu/ace/
3 Code is available at: https://github.com/batyak/PROSaiCO/
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Fig. 4: CNF and corresponding dtree.

the chart whose x, y coordinates represent runtime, in seconds, of WMC JT and C2D,
respectively. Points above the y = x line represent problem instances where WMC JT
performs better. Axes are log-scale. We also mark a linear trendline (which translates
to exponential trendline due to the log-scale) with it R2 value.

Grid networks The nodes in random grid networks represent binary variables that are
arranged in anN×N square. Each CPT is generated uniformly at random. The fraction
of the nodes that are assigned deterministic CPTs, having only 0 and 1 probability
entries, is captured by the deterministic ratio.

Figure 5 shows the results over the grid networks for three deterministic ratios. All
networks solved by at least one of the solvers are present. On the grids with a 50%
deterministic ratio, WMC JT outperformed C2D on 39 out of the 60 instances. On one
instance, C2D did not complete within the designated timeout. On the grids with a
75% deterministic ratio, WMC JT outperformed C2D on 43 out of the 110 instances,
while C2D outperformed WMC JT on 63 instances. On the 90% benchmark, WMC JT
outperformed C2D on only 13 of the 100 instances. Therefore, we can conclude that in
general, with less determinism WMC JT tends to outperform C2D. When the underlying
network contains a large percentage of deterministic factors (90%), a small fraction of
the node members determine the rest through UP and the time invested by WMC JT in
the generation of conditioning graphs and small tree-CPTs may be too costly.

Promedas and Segmentation Promedas stands for “ PRObabilistic MEdical Diagnostic
Advisory System”. The Promedas benchmark contains 238 Markov networks, consist-
ing of binary variables, which were converted from layered noisy-or Bayesian networks
that represent real-world medical diagnosis cases. The networks’ treewidth is up to 60,
and many of them are considered too difficult for exact algorithms4. Results are plotted
in Fig. 6a. Out of the 238 networks, WMC JT processed 102 networks within the des-
ignated timeout, while C2D completed 89. Out of the 89 networks processed by both
algorithms, C2D outperformed WMC JT on 65, while WMC JT outperformed C2D on
24. On the Segmentation benchmark, Fig. 6b, WMC JT outperformed C2D on all 50
instances.

4 http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks
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(a) deterministic ratio: 50%, 12 ≤ N ≤
18,

(b) deterministic ratio: 75%,16 ≤ N ≤
26

(c) deterministic ratio: 90%, 20 ≤ N ≤
38

Fig. 5: Grid networks: Points above the y = x line represent instances where WMC JT is better.

Overall, we observe that WMC JT tends to outperform C2D over instances with a low
to medium percentage of deterministic factors. Furthermore, the results and trendlines
of the Promedas and Segmentation benchmarks (Fig. 6) suggest that the relative per-
formance of WMC JT improves on “harder” instances, those which require more CPU
cycles for both algorithms. That said, we note that the algorithm execution time is deter-
mined by many variables. These include the d-tree used, its orientation and the variable
order generated by the heuristic described in Sec. 5.2.

(a) Promedas (b) Segmentation

Fig. 6: Points above the y = x line represent instances where WMC JT is better.

7 Related Work

We position our work along two dimensions: exhaustive search vs. knowledge compi-
lation, and dynamic vs. static decomposition.

DPLL-based algorithms exhaustively explore the search-tree for a formula, while
pruning unsatisfiable branches. At the heart of the search-based techniques for weighted
model counting are two operations, a Shannon expansion on a decision variable Z, that



On the Impact of Junction-Tree Topology on Weighted Model Counting 13

is, Pr(f) = Pr(f |z̄) Pr(z̄) + Pr(f |z) Pr(z) and the partitioning of the formula into
disjoint components [12]. Extensions that tremendously improve the performance of
DPLL-based algorithms include non-chronological backtracking, [1], conflict directed
clause-learning (CDCL), and variable branching heuristics [23].

In knowledge compilation, the formula is compiled into a representation that enables
computing the probability of evidence in time that is polynomial in its size [4, 21]. These
representations are based on Negation Normal Form (NNF) circuits [7] where internal
nodes represent either conjunctions or disjunctions and leaf nodes represent constants
or literals. Circuits that enable tractable model counting, termed deterministic-DNNF
(d-DNNF), must be decomposable and deterministic. The former requires children of
conjunction nodes to share no variables, and the latter requires children of disjunction
nodes to be mutual exclusive. State-of-the-art model counting compilers, C2D [6] and
DSharp [21], generate Decision-DNNF circuits that ensure determinism as follows.
Each or node, n, is associated with a variable X such that n’s right and left children
represent subformulas fn|x, and fn|x̄ respectively. This method of ensuring determin-
ism is closely related to the instantiation step of DPLL-based algorithms [14, 15]. Our
proposed approach fits knowledge compilation, where the CNF-tree may be reused to
answer different queries.

Static variable instantiation order is used to compile formulas to Ordered Binary
Decision Diagrams (OBDDs) [3]. In contrast, a fully dynamic order, applied in DPLL-
based algorithms, becomes effective in formulae that can be decomposed by a small
number of well selected variables. DPLL-based algorithms attempt to decompose the
formula into disjoint components after each instantiation. Nevertheless, despite the use
of clever heuristics [22], there is no guarantee to the effectiveness of the instantiation in
terms of partitioning the residual formula into disjoint components [12], making fully-
dynamic variable instantiation inefficient when applied to heavily connected formulae.

The approach presented in this paper, as well as the dtree-guided C2D approach,
may be considered semi-dynamic because the variable instantiation order is largely
determined by the structure and orientation of the CNF-tree (or dtree). Our approach,
however, takes a more holistic view and identifies the set of valid assignments that are
guaranteed to decompose the formula. It also makes a deliberate effort to minimize the
cardinality of this set by careful ordering of the node members.

8 Conclusions

We present CNF-trees of Boolean formulae to reveal structure that can be used to en-
hance the performance of WMC algorithms. We present a method for utilizing this
structure in order to generate small tree-CPTs, and evaluate it over a set of known
benchmarks. As part of future research we intend to characterize CNF-trees that enable
efficient WMC.
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