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Abstract. We study the problem of query evaluation over tuple-
independent probabilistic databases. We define a new characterization
of lineage expressions called disjoint branch acyclic, and show this class
to be computed in P-time. Specifically, this work extends the class of lin-
eage expressions for which evaluation can be performed in PTIME. We
achieve this extension with a novel usage of junction trees to compute
the probability of these lineage expressions.

1 Introduction

Applications in many areas such as data cleaning, data integration and event
monitoring produce large volumes of uncertain data. Probabilistic databases in
which the tuples’ presence is uncertain, and known only with some probability,
enable modeling and processing such uncertain data.

Answering queries over probabilistic databases has drawn much attention in
the database community in recent years. A model of tuple-independent (or tuple-
level semantics) probabilistic databases was introduced by Cavallo and Pittarelli
[3] and was extensively discussed in the literature, e.g., [9, 6]. According to this
model, each tuple t is annotated by an existence probability pt > 0, meaning it
appears in a possible world with probability pt, independently of other tuples.
This defines a probability distribution over all possible database instances.

Query evaluation over tuple-independent probabilistic databases is #P -hard
in general, even for simple conjunctive queries without self-joins [6]. Dalvi
and Suciu have introduced a dichotomy classification of queries over tuple-
independent probabilistic databases, where any query with a safe plan can be
computed extensionally by extending the query operators to enable an efficient
computation of the result’s probability [6, 5]. The extensional approach is very
efficient, but may be applied to a limited set of queries [13, 6].

Even for queries without a safe plan there are database instances for which
probabilities could be computed in PTIME. An intensional approach to evaluate
queries over tuple-independent probabilistic databases considers both the query
and the database instance. The query result is first computed and represented
as a Boolean formula, termed a lineage expression [2], defined over Boolean
variables corresponding to tuples in the database. The lineage describes how the
answer was derived from the tuples in the database (see Table 1).

Various inference algorithms can be used to compute the result tuple prob-
abilities, either exactly [16] or approximately [17]. Roy et al. [18] and Sen et
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Fig. 1: Probabilistic Database with variables

al. [19] showed a polynomial time algorithm for recognizing lineage expressions
that can be transformed to a read-once form, and computing their probabil-
ity. Their algorithm is applicable for lineages resulting from conjunctive queries
without self joins.

Consider the tuple-independent probabilistic database of Figure 1 and the
Boolean conjunctive query

Q1():-R (x, y) , Y (y, z) (1)

Q1 is a conjunctive query without self-joins that has a safe plan [6]. Olteanu and
Huang [16] showed that the lineage resulting from conjunctive queries without
self-joins, that have a safe plan, always have a read-once equivalent. Indeed, the
lineage expression of Q1 over the database in Fig. 1 is r1y1 + r2y2 + r2y3, which
has an equivalent read-once form, r1y1 + r2 (y2 + y3).
Q2 is an example of a query that does not have a safe plan:

Q2():-R (x, y) , Y (y, z) , T (z, w) (2)

The lineage expression of Q2 over the database is

r1y1t1 + r2y2t1 + r2y3t2 (3)

It was shown [18, 12] that Expression 3 does not have an equivalent read-once
form.

In this work we introduce a new class of lineage expressions called disjoint
branch acyclic lineage expressions. Such lineage expressions are defined using
restrictions on their respective hypergraph. Going back to Example 1, the lineage
expression in Eq. 3 is disjoint branch acyclic, possessing a special structure that
can be exploited for efficient computation.

We characterize disjoint branch acyclic lineage expressions and present, as
part of the proof of the class computation time, an algorithm to compute the
probability of this form in time that is polynomial in the size of the formula.

The rest of the paper is organized as follows: Section 2 introduces background
on a specific class of chordal graphs, probability computation using probabilistic
graphical models, and hypergraph acyclicity. Lineage acyclicity is presented in
Section 3. Section 4 presents the main theorem of this work, proving it by show-
ing an algorithm for probability computation of disjoint branch acyclic lineage
expressions. We conclude in Section 5.



2 Preliminaries

At the heart of the proposed method for computing the probability of Boolean
lineage expressions lies a graph with a specific structure termed rooted directed
path graph. This class of graphs and its PTIME recognition algorithm were first
introduced by Gavril [11]. This section discusses this class of graphs and other no-
tions significant to our proposed approach. We present a class of chordal graphs,
namely rooted directed path graphs (Section 2.1) and discuss probability com-
putation using probabilistic graph models (Section 2.2). We conclude with the
introduction of hypergraph acyclicity (Section 2.3).

A clique C of a graph G(V,E) is a subset of V where every pair of nodes
is adjacent. We denote by KG the set of maximal cliques in G. For a vertex
v ∈ V we denote by Kv the set of maximal cliques in KG that contain v. We
use T (V,E) to denote a tree. A subtree is a connected subgraph of a tree. In
particular, a path in a tree can be viewed as a subtree. Whenever a subtree is
induced from a subset of nodes V ′ ⊆ V of a tree T (V,E), we do not explicitly
state its set of edges, but rather denote it using T (V ′).

2.1 Classes of chordal graphs

A chord is an edge connecting two non-consecutive nodes in a cycle or path. G
is chordal or triangulated if it does not contain any chordless cycles. Discovering
whether G is chordal can be performed in time O(|V |+ |E|) [20].

A P4 denotes a chordless path with four vertices and three edges. A graph
is considered to be P4-free if it does not contain a P4.

An intersection graph of a finite family of non-empty sets is obtained by rep-
resenting each set by a vertex, and connecting two vertices if their corresponding
sets intersect. Gavril [10] characterizes the connection between chordal graphs
and intersection graphs, as follows.

Theorem 1 ([10]). Let G(V,E) be an undirected graph. The following state-
ments are equivalent:

1. G is chordal.
2. There exists a tree T (KG) such that for every v ∈ V the subgraph induced

by Kv is a subtree T (Kv).
3. G is the intersection graph of a family of subtrees of some tree T ′.

T (KG) is called a junction tree possessing the following running intersection
property : for every pair of cliques C1, C2 ∈ Kv every clique on the path from C1

to C2 in T (KG) belongs to Kv.
Let T ′ be a rooted directed tree, and consider a group of directed paths in

T ′. Let G be the intersection graph of directed paths in T ′. Then G is a Rooted
Directed Path Graph, and T ′ is called the host tree of G.

The following property (Theorem 2 [11]) defines a characteristic tree, asso-
ciated with a rooted directed path graph. This tree is of prime concern in this
work.



Theorem 2 ([11]). A graph G(V,E) is a rooted directed path graph (rdpg) iff
there exists a rooted directed tree Tr whose vertex set is KG, so that for every
vertex v ∈ V , Tr(Kv) is a directed path of Tr.

Constructing the characteristic tree of a rooted directed path graph G(V ),
if one exists, takes O(|V |4) [11].1 The characteristic tree Tr of an rdpg G(V,E)
is, in fact, a special form of a junction tree (Definition 1), where every vertex
v ∈ V appears in exactly one branch of Tr. Such a junction tree is known as a
disjoint branch junction tree (dbjt) [8].

Definition 1. Let Tr be a junction tree with root r and children r1, r2, ..., rl
roots of subtrees Tr1 , ..., Trl , respectively. A junction tree Tr is a dbjt if:

1. Tr contains a single node, r, i.e., |Tr| = 1, or
2. The following two conditions jointly hold: (a) ∀ri 6= rj , Cri ∩ Crj = ∅; and

(b) ∀Tri ∈ {Tr1 , Tr2 , ..., Trl}, Tri recursively complies with the conditions 1
and 2.

An example of a rooted directed path graph and its corresponding character-
istic tree (or dbjt) are presented in Figures 2b and 2c, respectively. Definition 1
characterizes the dbjt properties that enable the efficient computation we show
in this work.

2.2 Probability Computation using Probabilistic Graph Models

Probabilistic Graphical Models (PGMs) refer to a set of approaches for repre-
senting and reasoning about large joint probability distributions [15]. A PGM is
a graph in which nodes represent random variables and edges represent direct
dependencies between them. An example of a directed PGM is given in Figure
2a, representing the lineage expression of Eq. 3.

Inference in PGMs is the task of answering queries over the probability dis-
tribution described by the graph and is, in general, #P-complete [15]. One of
the well-known inference algorithms is the junction tree algorithm [15]. The al-
gorithm is designed for undirected PGMs in which for every maximal clique C in
the PGM, there exists a factor FC that is a function from the set of assignments
of C to the set of non-negative reals. The algorithm consists of two parts, compi-
lation and message passing. The compilation part includes three steps, namely
moralization, triangulation and construction, as follows. Moralization, in the case
of a directed PGM, involves connecting all parents of a given node and dropping
the direction of edges (e.g., Figure 2b). Triangulation adds extra edges to create
a chordal graph. The example graph obtained after moralization in Figure 2b is
already chordal and therefore no edges need to be added. We note that this ex-
ample is also a rooted directed path graph (see Section 2.1). Construction forms

1 To date, this is the most efficient published recognition algorithm for rooted directed
path graphs [4]. There is also an unpublished linear time algorithm [7] for this class
of graphs.
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Fig. 2: PGM, moralization and junction tree

a junction tree over the maximal cliques in the resulting graph G(V ). Figure 2c
shows the junction tree of the graph in Figure 2b. Note that since the graph is
a rooted directed path graph, its junction tree is in fact a dbjt.

The message-passing part has two steps. First, for each edge of the tree
(C1, C2) ∈ T a factor, defined over the variables in the intersection S = C1∩C2,
is defined. The factor entries are initialized to 1. Then, neighboring nodes C1, C2

exchange messages through the factor defined on their intersection FS , S =
C1 ∩ C2. The message from C1 to C2 is:

µC1,C2
(S) =

∑
x∈C1\S

F1(C1)

and the message from C2 to C1 is:

µC2,C1
(S) =

∑
x∈C2\S F2(C2)

µC1,C2(S)

After every pair of adjacent nodes in the junction tree have exchanged mes-
sages, each factor holds the marginal of the joint probability distribution of the
entire variable set. The message-passing protocol is such that every edge in the
tree is processed once in each direction. Therefore, the runtime of the message
passing algorithm is O(N ·Dk) where N is the number of nodes in the tree, D is
the domain of the variables, and k is the size of the largest clique. k−1 is referred
to as the width of the associated PGM and clearly, the inference algorithm is
exponential in the PGM’s width so bounded width implies tractability in graph-
ical models. PGMs may have several different triangulations, affecting the size
of the largest clique in the graph. The smallest width that can be obtained for a
PGM is its treewidth, where the treewidth of a chordal graph is simply its width.
Finding an optimal triangulation is known to be NP-complete. However, in this
work we introduce a method to compute the probability of a family of lineage
expressions in time that is polynomial in their treewidth.



2.3 Hypergraphs and Acyclicity

A hypergraph H = (V,E) is a generalization of a graph where V is the set of nodes
and the set of edges E is a set of non-empty subsets of V . Edges in a hypergraph
are termed hyperedges. The primal graph G(H) = (V,EG) corresponding to
a hypergraph H is the graph whose vertices are those of H and whose edges
are the set of all pairs of nodes that occur together in some hyperedge of H
(EG = {(u, v) : {u, v} ⊆ V,∃e ∈ E, {u, v} ⊆ e}). A hypergraph H is conformal
if every clique in its primal graph G(H) is contained in a hyperedge of H.
Acyclicity in a hypergraph is defined as follows.

Definition 2 (acyclicity [1]). A hypergraph H is acyclic (or α-acyclic) if H
is conformal and its primal graph G(H) is chordal.

Beeri et. al [1] showed that a hypergraph is acyclic iff it has a junction tree.
Duris [8] also showed that for a restricted form of acyclic hypergraphs (called
γ-acyclic) there exists a dbjt rooted at every node. An algorithm that constructs
a dbjt in time O(|V |2) for γ-acyclic hypergraphs was also introduced there.

3 Disjoint Branch Acyclic Lineage (DBAL) Expressions

We now introduce a class of Boolean lineage expressions, connecting it to rooted
directed path graphs. Let f(V ) denote a lineage expression of a set of literals
V , resulting from a query q, as derived by the query engine. Lineage expressions
of conjunctive queries are monotone formulas, where all literals are positive and
only conjunctions and disjunctions are used. An implicant p ⊆ V of f is a set of
literals such that whenever they are true, f is true as well. An implicant of f is
called a prime implicant if it cannot be reduced. We denote by fIDNF f ’s DNF
form containing only prime implicants. fIDNF can be modeled as a hypergraph
Hf (V,E), where each literal corresponds to a node in the graph and each prime
implicant corresponds to a hyperedge.

fIDNF is not always available, and expanding f to its DNF form may result
in an exponentially larger formula. Therefore, we now propose the construction
of an alternative graph G(f), built over f(V ). The set of literals V is the set
of nodes of G(f) and two nodes are connected iff they belong to a common
prime implicant. G(f) is exactly Hf ’s primal graph, i.e., G(Hf ) = G(f). For a
restricted set of queries, G(f) can be built directly from f by using a method
proposed by Roy et al. [18]. We say that f is conformal if every maximal clique
in G(f) is contained in a prime implicant of f .

Definition 1 (Lineage expression acyclicity). A lineage expression f is
acyclic if G(f) is chordal and f is conformal.

Definition 2 (Disjoint Branch Acyclic Lineage Expressions). A lineage
expression f is a Disjoint Branch Acyclic Lineage Expression or DBAL if f is
acyclic and G(f) is a rooted directed path graph.

Following the discussion in Section 2.1, DBAL expressions have a dbjt. The lin-
eage expression in Eq. 3 (Section 1) is an example of a DBAL. Its corresponding
dbjt is presented in Figure 2c.



4 DBAL Expression Probability Computation

In this section we prove that the probability of disjoint branch acyclic lineage
(DBAL) expressions over tuple independent probabilistic databases can be com-
puted in PTIME.

Theorem 1. Let f(V ) be a DBAL expression. The probability Pr(f = 1) can
be computed in time O(nk2) where n = |V | and k is the size of the largest clique
in G(f).

At the heart of the proof is an algorithm for computing the probability of
DBAL expressions in time that is quadratic in the size of the treewidth. This
solution is unique since, to the best of our knowledge, it is the first time an
algorithm that runs in time polynomial (quadratic) of the treewidth, as opposed
to exponential, is introduced in the context of tuple independent probabilistic
databases.

Section 4.1 introduces an example that will be used to demonstrate the al-
gorithm and Section 4.2 discusses factor representation in our setting. Finally,
Section 4.3 details the algorithm and presents lemmas 1 and 2 that argue for
the correctness of the algorithm and its complexity, respectively, which together
proves Theorem 1 above.

4.1 Illustrating Example

We first motivate and explain the algorithm approach using a simple example.
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Fig. 3: Illustration for Example 1

Example 1. Consider query Q2() : −R (x, y) , Y (y, z) , T (z, w), presented earlier
over the instance in Table 1. The lineage of the query is j = r1y1t1 + r2y2t1 +
r2y3t2. The primal graph corresponding to the query is given in Figure 3a. It



is easy to see that this lineage expression is not read-once since it has a P4:
(r1, t1, r2, t2). Let us denote by i1 = r1y1t1, i2 = r2y2t1, and i3 = r2y3t2. We are
ultimately interested in calculating the probability: Pr(j = 1) = 1− Pr(j = 0).
If j = 0 then we know that i1 = i2 = i3 = 0. These values can be seen as
introduction of evidence in a Bayesian network, illustrated in Figure 3b. After
moralization (see Section 2.2), the network is chordal and conformal and there-
fore has a junction tree depicted in Figure 4. In the Junction-Tree algorithm,
any node may be selected as root. For this example let us select node {r2, y3, t2}
as the root. ut

In the classic junction tree algorithm, where factors are represented in tabu-
lar form, each entry in the factor table represents a single assignment, leading to
a representation that is exponential in the number of variables in the table. We
present linear sized factors, where each entry represents multiple assignments.
See, for example, Figure 4, where asterisks represent wildcard assignments. Here,
the number of entries in each factor is exactly the node’s cardinality. The mes-
sage passing is illustrated in Figure 4, and will be demonstrated in detail in
Section 4.3. After the completion of the algorithm, the root node contains the
marginal probability of its entries (see Section 2.2). Therefore, all the entries of
the root node’s factor are added in order to obtain the required probability.

4.2 Factor Representation and Projection

Hereinafter we shall use a tabular notation to represent a factor, where columns
represent random variables, and rows correspond to a set of mutual exclusive
value assignments. The notation introduced below is illustrated in Example 2.
Given a factor over the set of random variables X = (X1, X2, ..., Xn) we denote
by FX [j, k] (or simply F [j, k] whenever the variable set is clear from the context)
the value of Xk in the jth entry. Xk’s value may be the wildcard,‘*’, indicating
that it can be either 0 or 1. The assignments represented by the jth entry
are denoted by F [j] and their overall probability is denoted by Pr(F [j]). Let
X ′ ⊂ X be a subset of the variables of factor F , we denote by F [j,X ′] the
values of variables X ′ in the jth entry of the factor. Finally, given an assignment
X = x, we denote by Pr(F [x]) the probability corresponding to this entry in
factor F .

Example 2. Consider the factor F in Table 2, representing the joint distri-
bution of independent boolean random variables X1, X2, X3. Using our no-
tation, F [2, 3] = ∗ and F [2] = [1, 0, ∗]. Also, Pr(F [3]) = pX1

· pX3
and

F [3, {X1, X3}] = [1, 0]. Finally, Pr(F [{X1 = 1, X2 = 0, X3 = ∗}]) = pX1
. ut

Each maximal clique in the primal graph of a DBAL expression corresponds
to exactly one prime implicant of the lineage’s IDNF form. As a result, each node
in the corresponding junction tree contains a factor that represents a single DNF
prime implicant of the lineage. We will refer to these as DNF factors. For each
variable X in the expression we define a base factor, F bX . Base factors contain
exactly two entries, with values 0, 1 and their appropriate probabilities pX , pX ,



respectively. Each base factor is assigned to exactly one node in the junction
tree.

Consider some DNF prime implicant d, containing k literals, d = X1 · X2 ·
... ·Xk. The probability of d = 0 is computed as follows:

Pr(d = 0) = Pr(X1 = 0)+Pr(X1 = 1, X2 = 0)+...+Pr(X1 = 1, ..., Xk−1 = 1, Xk = 0).
(4)

X1 X2 ... ... Xk Pr
0 * * * * 1
1 0 * * * 1
1 1 0 * * 1
1 ... ... ... * 1
1 1 1 ... 0 1

Table 1: Factor Table

The k summands in Eq. 4 create a mutually exclusive
and exhaustive set of configurations.

For illustration, consider Table 1 over X1, ..., Xk. The
“Pr” values are initialized to 1.

The asterisks in the table represent wildcard assign-
ments, as follows:

Pr(X1 = 1, ..., Xi−1 = 1, Xi = 0, Xi+1 = ∗, ..., Xk = ∗) =∑
xi+1,...,xk∈{0,1}

Pr(X1 = 1, ...Xi−1 = 1, Xi = 0, Xi+1 = xi+1, ..., Xk = xk) =

∑
xi+1,...,xk∈{0,1}

Pr(Xi+1 = xi+1, ..., Xk = xk|X1 = 1, ..., Xi−1 = 1, Xi = 0) · Pr(X1 = 1, ..., Xi−1 = 1, Xi = 0)

= Pr(X1 = 1) · ... · Pr(Xi−1 = 1) · Pr(Xi = 0) ·
∑

xi+1,...,xk∈{0,1}

Pr(Xi+1 = xi+1, ..., Xk = xk)

(5)

using the tuple independence assumption in the transition from the third to the
fourth line of the equation. Informally, once we know that Xj = 0, then the
implicant’s value is false regardless of the values of its other literals.

At the beginning of the algorithm, the values in the “Pr” column of the
factors depend on the assignment of the base factors to the nodes in the tree.
For example, a factor over variables X1, X2, X3 at the beginning of the algorithm
is given in Table 2. For the sake of illustration, we assume that the base factor
F bX2

is assigned to a different node (DNF factor).

X1 X2 X3 Pr
0 * * pX1

1 0 * pX1

1 1 0 pX1
· pX3

Table 2: Factor Table with
partial base factors

The proposed algorithm is actually a series of
projections (defined below) over the linear-sized
factors of the junction tree. In the general mes-
sage passing algorithm [15], in which each entry
in the factor represents a single configuration of
the variables (and therefore the size of the fac-
tor is exponential in the number of variables), the
probabilities of the entries with common values in
the projected variables are simply added. This is not the case for the linear sized
factors used in our setting. Definition 1 formalizes this notion of projection in
our setting, and Example 3 demonstrates it.

Definition 1 (factor projection). Let FX∪X′ be a factor over variables X ∪
X ′ where X = {X1, ..., Xm} and X ′ = {X ′1, ..., X ′l}. The projection of F over



the variables in X, denoted FX =
∏
X FX∪X′ , is a new factor containing only

variables X. The probability column in FX is computed as follows:

Pr(FX [j]) =
∑

i∈[1,|X∪X′|]:FX∪X′ [i,X]=FX [j]

Pr(FX∪X′ [i])

The projection
∏
X FX∪X′ may be applied to FX∪X′ under the following condi-

tions:

1. The variables X ′, projected out of the factor FX∪X′ , appear after (referring
to column order) the variables X.

2. The base factors corresponding to the variables X ′ are included in factor
FX∪X′ before the projection operation can be applied.

Example 3. Consider Table 2 and the factor FX1,X2,X3
over the variable set

{X1, X2, X3}. We start by projecting out the variable X3. Condition 1 of Defini-
tion 1 is satisfied. As for Condition 2, X3’s probability, pX3

, is already available
in the factor, and therefore

FX1,X2
=

∏
X1,X2

FX1,X2,X3
=

X1 X2 Pr
0 ∗ pX1

1 0 pX1

1 1 pX1
· pX3

Projecting out X2 from FX1,X2 requires multiplying in X2’s base factor to satisfy
Condition 2. Therefore,

FX1
=

∏
X1

FX1,X2
=

X1 Pr
0 pX1

1 pX1(pX2
+ pX2 · pX3

)

ut

4.3 Algorithm Description

Let Ci denote the set of variables in node i of the junction tree, |Ci| its car-
dinality, and Fi its factor. In this section we use the factor notation defined in
Section 4.2. Br denotes the set of variables in node r, for which base factors
have been assigned, i.e., Br = {X : X ∈ Cr, F bX is assigned to r}. We denote
by children(i) and p(i) the children and parent of node i in the junction tree,
respectively. A message between node i and node j, µi,j(Ci ∩ Cj) is a factor
over the intersection of the two nodes. The number of entries in µi,j(Ci ∩Cj) is
|Ci ∩ Cj |+ 1 (including the entry containing all ones).

The algorithm uses a partial order 4 over the variables in the junction tree
T . We denote by vars(4) the set of variables over which 4 is defined.

The pseudocode of the algorithm over linear sized factors is given in algo-
rithms 1 and 2. After the initial call to Algorithm 2 (Line 1 of Algorithm 1), the



Algorithm 1: Message Passing: Initial Call

Input: dbjt (see Definition 1) Tr′ with root r′ corresponding to a lineage
expression f .
Output: Pr(f = 0)

1: Call Algorithm 2 with parameters: Tr′ and 4← ∅.
2: Return

∑|Cr′ |
j=1 Pr(Fr′ [j]).

algorithm performs a series of recursive calls to update the probabilities in the
node factors of the junction tree.

Each message from a node i to its parent, p(i), is a projection on factor Fi
over the variables Ci ∩ Cp(i). According to the definition of projection (Defini-
tion 1), variables Ci ∩ Cp(i) should appear before Ci \ Cp(i) in the factor table
representation. Therefore, lines 1-5 of Algorithm 2 define an order over the vari-
ables in the root node r that was given as a parameter (Cr), such that projection
over variables Cr∩Cp(r) is made possible. In Example 1, Figure 4, the root node
contains ordered variables {r2, y3, t2}. In the factor for the child node with vari-
ables {t1, r2, y2}, r2 appears before t1 and y2 because the message between this
node and its parent is over variable r2. Likewise, in the factor with variables
{t1, r1, y1}, t1 appears before r1 and y1. The order is updated in line 5.

Lines 6-10 initialize a factor for node r based on the ordering 4 that was
updated in lines 1-5, and according to the base factors assigned to this node. In
Example 1 (Figure 4), the base factors for variables y3 and t2 are assigned to
the root node, while the base factor for r2 is assigned to the middle node (with
variables {t1, r2, y2}).

Lines 11-21 initiate a recursive call on the children of r. In Line 13, the
messages from all children of r are collected. Each one of the messages, µi,r(Cri∩
Cr), received by the node in line 13 contains |Cri ∩ Cr|+ 1 entries, which form
an exhaustive and mutual exclusive set of configurations. For example, consider
the message µ1,2(t1) from node {t1, r1, y1} to node {t1, r2, y2} (Figure 4).

As in the case of projection, in order to add the probabilities of the entries
in the messages, the appropriate base factors need to be multiplied in before the
addition can take place. For example, in Figure 4, the base factor for t1, F bt1 , is
not part of the factor of node {t1, r1, y1}, and therefore not part of the original
message, µ1,2(t1), (containing only entries where t1 = 0 and t1 = 1). However, in
order to augment the factor with the entry t1 = ∗, the values in the probability
column of the entries corresponding to t1 = 0 and t1 = 1 need to be added. In
order for the resulting probability to be correct, the probabilities of the entries
corresponding to t1 = 0 and t1 = 1 are multiplied by pt1 and pt1 respectively.
The entry where t1 = ∗ in Figure 4 was appended to the message because it
will be used by node {t1, r2, y2}. Such entries are calculated in lines 14-21 of the
algorithm. There are exactly |Cri ∩Cr| such entries added to the message which
correspond to partial sums over the entries in the original message µi,r(Cri∩Cr).



Algorithm 2: Message Passing: Main Procedure
Input: dbjt Tr with root r and a partial order 4.
Output: Factor Fr with correct probabilities

1: if r 6= r′ then
2: Define an order 4r over Cr s.t.: 1. Cr ∩ Cp(r) appear before Cr\Cp(r) 2. The order of

variables Cr ∩ vars(4) complies with 4.
3: else
4: define an arbitrary order over variables Cr

5: Update 4 according to the steps above.
{Initialize node’s factor based on 4}

6: Define a linear-sized factor Fr based on 4.
7: for j ← 1 to |Cr| do
8: Pr(Fr[j])← 1.0 {initialize factor entries}
9: for X ∈ Br do
10: Pr(Fr[j])← Pr(Fr[j]) · Pr(X = Fr[j, {X}])
{apply projection on subtrees}

11: for all ri ∈ children(r) do
12: Recursively call the algorithm on subtree Tri

with root ri and (updated) ordering 4.

13: µi,r(Cr ∩ Cri
)←

∏
Cr∩Cri

(Fri
) [project on the children’s factor to get the message]

14: for j ← 1 to |Cr ∩ Cri
|+ 1 do

15: Mi,r[j]← 1.0 [iterate over entries in the message]
16: for X ∈ ((Cr ∩ Cri

) \ Bri
) do

17: Mi,r[j]←Mi,r[j] · Pr(X = µi,r[j, {X}]) [Pr(X = ∗) = 1.0]
18: prob← Pr(µi,r[|Cri

∩ Cr|+ 1) ·Mi,r[|Cri
∩ Cr|+ 1] [initialize prob according to entry

[1,1,...,1]]
19: for k ← |Cri

∩ Cr| to 1 do

20: prob← prob+ Pr(µi,r[k]) ·Mi,r[k] [update prob]
21: Pr(µi,r[X1 = 1, ..., Xk−1 = 1, Xk = ∗, ..., X|Cri

∩Cr| = ∗])← prob

{update factor using children’s projected factors}
22: for j ← 1 to |Cr| do
23: for all ri ∈ children(r) do
24: Pr(Fr[j])← Pr(Fr[j]) · Pr(µi,r[Fr[j, Cri

∩ Cr]])

Finally, lines 22-24 update Fr according to the messages received from its
children. The correctness of the algorithm for disjoint branch junction trees
is given in Lemma 1. The proof is omitted due to space considerations. It is
available in the full version of this paper [14].

Lemma 1. Let Tr′ be a dbjt with root r′, corresponding to lineage expression f .
After running Algorithm 1 on Tr′ , Pr(Fr′ [j]), j ∈ [1, |Cr′ |] contains the marginal
probability corresponding to the configurations represented by the jth entry of this
factor.

Lemma 2. The complexity of algorithms 1 and 2 on a disjoint branch junction
tree of size n is O(n · k2

MAX) where kMAX = MAXi=1..n|Ci|.

Proof. The loop in lines 6-10 is performed in O(|Cr|2) since |Br| ≤ |Cr|. Sim-
ilarly, the loop in lines 14-17 is performed in O((|Cr ∩ Cri | + 1)2), but since
subsumption cannot occur in the junction tree, |Cr| > |Cr ∩ Cri |, we arrive
again at runtime of O(|Cr|2). The loop in lines 19-21 takes time O(|Cr ∩ Cri |).

A node r in the tree receives messages from all of its neighbors, except its
parent in the algorithm. Since the children create a partition of a subset of the
variables in the node, then the number of children can be at most |Cr|. The
number of entries for which the probability is updated is exactly |Cr|, therefore
the total runtime is

∑n
i=1O(|Cr|2) = O(n · (k2

MAX)).
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Fig. 4: Message Passing using Alg. 2 over f = t1r1y1 + t1r2y2 + r2y3t2

Algorithms 1 and 2 along with Lemmas 1 and 2 complete the proof for the
main theorem of this section, Theorem 1. Overall, we have shown that DBAL
expressions, having a dbjt, can be evaluated in polynomial time.

5 Conclusions

We have presented disjoint branch acyclic lineage expressions, a new class of
lineage expressions of queries over tuple independent probabilistic databases,
and shown that probability computation over this class can be done in low
polynomial data complexity.

As part of future research we plan to investigate queries and database in-
stances that induce junction trees with structural properties that enable efficient
probability calculation. Furthermore, we plan to explore how such queries relate
to existing characterizations of tractability [13]. Since correlations between tuples
can naturally arise in many applications, we intend to investigate how to extend
the proposed approach to models without the tuple-independence assumption.
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