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ABSTRACT
We propose a novel framework wherein probabilistic prefer-
ences can be naturally represented and analyzed in a prob-
abilistic relational database. The framework augments the
relational schema with a special type of a relation symbol—a
preference symbol. A deterministic instance of this symbol
holds a collection of binary relations. Abstractly, the prob-
abilistic variant is a probability space over databases of the
augmented form (i.e., probabilistic database). Effectively,
each instance of a preference symbol can be represented
as a collection of parametric preference distributions such
as Mallows. We establish positive and negative complex-
ity results for evaluating Conjunctive Queries (CQs) over
databases where preferences are represented in the Repeated
Insertion Model (RIM), Mallows being a special case. We
show how CQ evaluation reduces to a novel inference prob-
lem (of independent interest) over RIM, and devise a solver
with polynomial data complexity.

CCS Concepts
•Mathematics of computing → Probabilistic infer-
ence problems; •Information systems → Database de-
sign and models;

Keywords
Probabilistic Databases; Probabilistic Preferences; Ranking
Distributions; Repeated Insertion Model

1. INTRODUCTION
Preferences are statements about the relative quality or

desirability of items. Ever larger amounts of preference
information are being collected and analyzed in a variety
of domains, including recommendation systems [4, 31, 33]
and polling and election analysis [10, 15, 16, 29]. Preference
datasets are also abundant in bioinformatics, where infor-
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mation about the relative expression levels of genes in a cell
may provide evidence that groups of genes are involved in a
common biological pathway [1,22,34].

Preferences are often inferred from indirect input (e.g., a
ranked list may be inferred from individual choices), and are
therefore uncertain in nature. This motivates a rich body of
work on uncertain preference models in the statistics litera-
ture; see Marden [28] for a comprehensive reference. More
recently, the machine learning community has been devel-
oping methods for effective modeling and efficient inference
over preferences [3, 7, 11,15,17,19,23–25], with the Mallows
model [27] receiving particular attention [11,12,25,32].

In this paper, we take the position that preference model-
ing and analysis should be accommodated within a general-
purpose probabilistic database framework. The framework
presented here is based on a deterministic concept that we
proposed in a past vision paper [18]. There, a preference
schema is a relational schema with some relation symbols
marked as preference symbols (and others as ordinary sym-
bols). Figure 1 gives an example of an instance of a pref-
erence database, with the ordinary symbols Candidates
and Voters and the preference symbol Polls. An instance
(table) over a preference symbol represents a collection of
preference relations, called sessions, over a set of elements,
called items. The signature (attribute list) of a preference
symbol distinguishes between the session identifier, the left-
hand-side item and the right-hand-side item. For example,
the tuple (Ann, Oct-5; Sanders; Clinton) in Polls denotes
that in the session of the voter Ann on October 5th, the
candidate Sanders is preferred to the candidate Clinton.

In our past proposal [18] we focused on representing deter-
ministic preferences, and emphasized the importance of scal-
able and usable support for operations on preference data.
These include relational operators and common analytics
such as rank aggregation, clustering, and transitive closure,
which we called “preference-to-preference functions.” In the
present work we focus on a different angle of the story—
handing uncertain preferences. We develop a probabilistic
representation of preferences within a probabilistic prefer-
ence database, or PPD for short.

A PPD may store the probability space explicitly, or it
may represent it compactly using a parametric model. The
PPD framework leads to novel theoretical problems and al-
gorithms, as we illustrate in a specific kind of PPDs, where
each session is represented as an independent Repeated In-
sertion Model (RIM) [12]. RIM specifies a probabilistic
ranking (linear order) via a generative process that reorders



a reference ranking by repeatedly inserting the items into
the random ranking in a left-to-right scan. RIM generalizes
various distributions over rankings, such as the well-known
Mallows model [27], the generalized Mallows model [13] and
the multistage ranking model [14].

In the PPD representations we explore, termed RIM-
PPD, each session is associated with the parameters of a
RIM model—the reference ranking and the dispersion pa-
rameter that determine the insertion probabilities. A RIM-
PPD represents a probability space over preference databases,
where a possible world is obtained by independently sam-
pling a preference from the model of each session. Figure 2
gives an example of an instance of a MAL-PPD, which is
a particular kind of a RIM-PPD. This representation com-
pactly encodes the probability space of each session in Polls
from Figure 1 by associating it with a Mallows model.

We study the data complexity of evaluating Conjunctive
Queries (CQs) over RIM-PPDs. We focus on CQs to which
we refer as itemwise. Intuitively, these are CQs where items
are connected only through preferences. We first show a
natural fragment of CQs where the itemwise CQs are pre-
cisely the CQs in which query evaluation can be done in
polynomial time (under standard complexity assumptions).
Here, query evaluation is meant in the sense of probabilistic
databases [35], where the task is to compute the marginal
probability of every possible answer. In the fragment we
consider, we prove that every query that is not itemwise is
actually #P-hard, and therefore, we establish a dichotomy
in complexity.

The main analytical contribution of this paper is a
polynomial-time algorithm for evaluating itemwise CQs. In-
terestingly, such CQs translate into a natural (and novel)
inference problem over RIM. In this problem, every item is
associated with one or more labels (e.g., “democratic” party
or “comedy” genre), and the goal is to compute the prob-
ability that a graph pattern (or equivalently a partial or-
der) over these labels matches the random ranking; that is,
there exists a mapping from the nodes of the pattern to
the items of the ranking such that labels (pattern nodes)
and preferences (pattern edges) are preserved. The algo-
rithm deploys dynamic programming, following a sequence
of nontrivial reductions. We further describe how this algo-
rithm can be extended to support claims about minimal and
maximal indices of labels, and therefore compute the proba-
bilities of events such as “the top-3 preferred movies include
a Hitchcock movie” and “every young democratic candidate
is preferred to every republican one.” We are motivated by
queries for recommendations that seek rankings subject to
constraints on diversity.

As we illustrate in the paper, our labeled RIM model,
and in particular our inference algorithm, are of interest
independently from the PPD framework. We share mo-
tivation with recent research on probabilistic preferences,
where the goal is in general to reason about distributions
over rankings [8,25,26]. Existing inference algorithms apply
to queries expressed as a partial order over individual items
(e.g., compute the probability that Sanders is preferred to
both Clinton and Trump, and that Clinton is preferred to
Trump), but give only limited insight into preferences over
groups of items (that we capture by labels). More recently,
ranking distributions over labeled items have been intro-
duced [17, 30] with the goal of using labels to enrich the
expressiveness of distribution models.

There is a large body of work on supporting preference
operators, such as top-k and partial orders, in relational
databases. For example, Kießling [21] proposes to extend
relational algebra with richer preference specifications than
is supported by “ORDER BY” and “LIMIT”, while Arvan-
tis and Koutrika [2] demonstrate that preference operators
can be implemented efficiently in scope of an RDBMS. In a
nutshell, the goal of their work is to elegantly express and
efficiently compute user preferences over the results of re-
lational queries. In contrast, we focus on representing and
querying databases in which preferences appear as data.

To summarize, in this paper we make the following con-
tributions. First, we develop the framework of a probabilis-
tic preference database. Second, we give a dichotomy in
complexity for a fragment of CQs over RIM-PPDs. Third,
we present an algorithm for evaluating itemwise CQs over
RIM-PPDs. Fourth, we embark on the analysis of a novel
and natural inference problem over RIM with labels. Lastly,
we present an inference algorithm for querying labeled RIM.

2. PRELIMINARIES
In this section we set the basic terminology and notation

that we use throughout the paper.

2.1 Database Model
A relation signature is a finite sequence α of distinct at-

tributes. When there is no risk of ambiguity, we view α
as a set, rather than sequence, of attributes. A tuple t
over a relation signature α is a mapping from (the attribute
set of) α to atomic values (e.g., numbers and strings). If
α = (A1, . . . , Ak), then we identify a tuple t over α with the
sequence (t(A1), . . . , t(Ak)). An instance over α is a finite
set of tuples over α. A relational schema (or just schema for
short) is a finite set S of relation symbols, where every rela-
tion symbol R is associated with a relation signature that we
denote by sig(R). We say that R is k-ary if sig(R) consists
of k attributes. A database D over a schema S associates
with each relation symbol R an instance over sig(R); we
denote this instance by RD.

A query Q over a schema S is associated with a rela-
tion signature that we denote by sig(Q), and it maps every
database D over S into an instance over sig(Q); we denote
this instance by Q(D). A query Q is k-ary if sig(Q) is of
length k. A query Q of arity 0 is said to be Boolean, and
in this case the result Q(D) is either empty, corresponding
to false, or the singleton {()}, corresponding to true. The
statements Q(D) = {()} and Q(D) = ∅ are also written as
D |= Q and D 6|= Q, respectively.

As a special case of a query, a Conjunctive Query (CQ)
is represented by an expression of the form

Q(x)← ϕ1(x,y), . . . , ϕm(x,y)

where x and y are disjoint sequences of distinct variables,
and each ϕi(x,y) is an atomic formula. Here, an atomic
formula (or just atom for short) has the form R(t1, . . . , tk),
where R is a k-ary relation symbol, and each ti, called term,
is a variable (from x or y) or a constant. The right hand side
ϕ1(x,y), . . . , ϕm(x,y) is called the body of Q. We make the
requirement that each variable of Q occurs at least once in
the body. A homomorphism from Q to a database D (over
the same schema) is a function h that maps every variable of
Q to a constant, such that for each atom R(t1, . . . , tk), the
tuple (t1, . . . , tk) is in RD once each variable z is replaced



with h(z). The signature sig(Q) is x (hence, variables act
as attributes). The set Q(D) consists of the restrictions of
all homomorphisms to x; that is, if x = (x1, . . . , xk) then
Q(D) is the set of all tuples (h(x1), . . . , h(xk)) such that h
is a homomorphism from Q to D.

2.2 Probability Spaces
All the probability spaces we refer to are discrete (and

even finite). Formally, a probability space is a pair (Ω, π),
where Ω is a countable set, called the sample space, and
π : Ω → [0, 1], called the probability mass function, is such
that

∑
o∈Ω π(o) = 1. Each element in the sample space is

called a sample. Let P = (Ω, π) be a probability space. As
conventional, if ψ : Ω→ {true, false} is a Boolean condition
over samples, then Pr(ψ(P)) denotes the sum of π(o) over
all the samples o ∈ Ω with ψ(o) = true. (Note that this is
a slight abuse of notation, as in ψ(P) the symbol P denotes
a random element from the sample space Ω and not the
probability space.)

2.3 Orders and Rankings
A binary relation � over a set I = {σ1, . . . , σn} of items

is a (strict) partial order if it is irreflexive and transitive;
that is for all i, j and k we have σi 6� σi, and σi � σj
and σj � σk imply σi � σk. A linear (or total) order is
a partial order where every two items are comparable. By
a slight abuse of notation, we often identify a linear order
σ1 � · · · � σn with the sequence 〈σ1, . . . , σn〉, and we call
it a ranking over {σ1, . . . , σn}, or just ranking if the set of
items is clear from the context. We denote by rnk(I) the set
of all rankings over I. If σ = 〈σ1, . . . , σn〉 is a ranking, then
items(σ) denotes the set {σ1, . . . , σn}, and �σ denotes the
order that σ stands for; that is, σi �σ σj whenever i < j.
Finally, σ(τ) denotes the position of an item τ in a ranking
σ; that is, if σ = 〈σ1, . . . , σn〉 and τ = σi, then σ(τ) = i.

Example 2.1. Our running example is on individual pref-
erences among US presidential candidates. Let I be the set
{Clinton, Rubio, Sanders, Trump}. The ranking

τ = 〈Clinton, Rubio, Sanders, Trump〉

is an example member of rnk(I). We have items(τ ) = I and
�τ is the linear order given by

Clinton �τ Rubio �τ Sanders �τ Trump .

In particular, we have Clinton �τ Trump.

2.4 The Repeated Insertion Model (RIM)
The Repeated Insertion Model [12], or RIM for short, is

a generative process that gives rise to a family of distribu-
tions over rankings (linear orders over an itemset). RIM is
a generalization of some well known statistical models for
rankings such as Mallows [27] (defined later in this section),
generalized Mallows [13], and multistage ranking [14].

A RIM model has two parameters, σ and Π, and is de-
noted by RIM(σ,Π). The first parameter is a ranking σ =
〈σ1, . . . , σm〉 referred to as a reference ranking. The model
defines a probability distribution over the rankings of the
items, or more formally, over the sample space rnk(items(σ)).
The probability of each ranking is defined by a generative
insertion process that we describe below, using the second
parameter. This parameter, Π, is called an insertion prob-
ability function (or just insertion function for short) and

it maps every pair (i, j) of integers, with 1 ≤ i ≤ m and
1 ≤ j ≤ i, into a probability Π(i, j) ∈ [0, 1], so that for

all i = 1, . . . ,m we have
∑i
j=1 Π(i, j) = 1. (In particular,

Π(1, 1) = 1.)
Semantically, in RIM(σ,Π) a ranking in rnk(items(σ)) is

generated by the following randomized process. Suppose
that σ = 〈σ1, . . . , σm〉. We begin with the empty ranking,
and scan the items σ1, . . . , σm in order, starting with σ1.
Each σi is inserted into a random position j ∈ {1, . . . , i}
inside the current series 〈τ1, . . . , τi−1〉, pushing τj , . . . , τi−1

forward, and resulting in the series

〈τ1, . . . , τj−1, σi, τj , . . . , τi−1〉 .

An important property of this process is that the insertion
position of each σi is probabilistically independent of the
positions of the previous items σ1, . . . , σi−1. Moreover, an
easy observation is that every insertion sequence gives rise
to a unique ranking.

The above process defines a probability for each rank-
ing τ over items(σ), and we denote this probability by
Πσ(τ ). The resulting probability space is (Ω, π), where Ω
is rnk(items(σ)) and π is Πσ. We denote this probability
space by JRIM(σ,Π)K.

Example 2.2. Continuing with our running example, con-
sider a model RIM(σ,Π), where

σ = 〈Clinton, Sanders, Rubio, Trump〉 .

The following is a possible random execution of the gener-
ative process, where the result is the ranking τ of Exam-
ple 2.1. We begin with τ being the empty ranking 〈〉, and
insert items (candidates) as follows.

1. τ = 〈Clinton〉 (with probability Π(1, 1) = 1);

2. τ = 〈Clinton, Sanders〉 (with probability Π(2, 2));

3. τ = 〈Clinton,Rubio,Sanders〉 (with probability Π(3,
2));

4. τ = 〈Clinton, Rubio, Sanders, Trump〉 (with probabil-
ity Π(4, 4)).

Therefore, the probability of τ is given by Πσ(τ ) = Π(1, 1)×
Π(2, 2)×Π(3, 2)×Π(4, 4).

An important and well known special case of RIM is the
Mallows model, which we define next.

2.4.1 The Mallows Model
A Mallows model [27] is parameterized by a reference

ranking σ = 〈σ1, . . . , σm〉 and a dispersion parameter φ ∈
(0, 1], and is denoted by MAL(σ, φ). The model MAL(σ, φ)
assigns to every ranking τ ∈ rnk(items(σ)) a non-zero prob-
ability defined by

Pr(τ | σ, φ)
def
==

1

Z
φd(τ ,σ) .

Here, d(τ ,σ) is Kendall’s tau [20] distance between τ and
σ that counts the disagreements between τ and σ, and is
formally given by

d(τ ,σ)
def
==

∑
1≤i<j≤m

1[τ (σj) < τ (σi)] .



Candidates (o)
cand party sex edu
Trump R M BS
Clinton D F JD
Sanders D M BS
Rubio R M JD

Voters (o)
voter edu sex age
Ann BS F 25
Bob BS M 35
Cat MS F 40
Dave MS M 45
Eve BS F 55
Fred JD M 35

Polls (p)
voter date lcand rcand
Ann Oct-5 Sanders Clinton
Ann Oct-5 Sanders Rubio
Ann Oct-5 Sanders Trump
Ann Oct-5 Clinton Rubio
Ann Oct-5 Clinton Trump
Ann Oct-5 Rubio Trump

Bob Oct-5 Sanders Rubio
Bob Oct-5 Sanders Clinton
Bob Oct-5 Sanders Trump
Bob Oct-5 Rubio Clinton
Bob Oct-5 Rubio Trump
Bob Oct-5 Clinton Trump

Dave Nov-5 Clinton Rubio
Dave Nov-5 Clinton Sanders
Dave Nov-5 Clinton Trump
Dave Nov-5 Rubio Sanders
Dave Nov-5 Rubio Trump
Dave Nov-5 Sanders Trump

Figure 1: An example of a preference database

The indicator function 1 assigns 1 to true statements and 0
to false ones. The normalization constant Z is the sum of
φd(τ ,σ) over all τ ∈ rnk(items(σ)).

Intuitively, the higher the distance of a ranking τ is from
the reference ranking σ, the lower its probability under the
Mallows model. Lower values of φ concentrate most of the
probability mass around σ, while φ = 1 corresponds to the
uniform probability distribution over rnk(items(σ)).

Doignon [12] has shown that MAL(σ, φ) can be repre-
sented as the insertion model RIM(σ,Π) where

Π(i, j)
def
==

φi−j

1 + φ+ · · ·+ φi−1
.

The reader can verify that Π is, indeed, an insertion function
for RIM, as previously defined.

Example 2.3. Figure 2 depicts three Mallows models,
aligned with the rows of the table (that we later discuss).
The model in the top row, for instance, is MAL(σ, φ) where
σ = 〈Clinton, Sanders,Rubio,Trump〉 and φ = 0.3.

3. PROBABILISTIC PREFERENCE
DATABASES

In this section we define the central concept of our
framework—the probabilistic preference database. The defi-
nition builds on the concept of a “preference relation” that
we introduced in a past vision paper [18]. We will illustrate
the concepts of this section with our running example of
a probabilistic preference database describing polling in a
presidential election.

3.1 Preference Databases
Intuitively, a preference relation stores a collection of bi-

nary relations (called preferences) among a set of items,

where each such binary relation is called a session. A pref-
erence relation instantiates a special relation symbol with
a signature that distinguishes between three kinds of at-
tributes: one corresponds to the session identifier, one to
the left item, and one to the right item.

Formally, a preference signature is a relation signature of
the form β,Al, Ar (i.e., the concatenation of β, Al and Ar
from left to right), where β is a relation signature that we
call the session signature, and Al and Ar are attributes that
we call the left-hand-side (lhs) attribute and right-hand-side
(rhs) attribute, respectively. For presentation sake, we use
semicolon (;) to distinguish between the different parts and
write (β;Al;Ar).

Example 3.1. In our running example we use the pref-
erence signature (voter, date; lcand; rcand). Here the com-
ponents β, Al and Ar are (voter, date), lcand, and rcand,
respectively.

Let (β;Al;Ar) be a preference signature, and let r be an
instance over (β;Al;Ar). Every value that occurs in either
the lhs attribute or rhs attribute of r is called an item, and
we denote by items(r) the set of items of r. Hence, items(r)
can be identified with πAl(r) ∪ πAr (r). A session of an
instance r is the β part of a tuple; that is, a tuple in the
projection πβ(r). We denote πβ(r) by sessions(r). Observe
that β can be empty, and then an instance r can store at
most one session. Semantically, r maps every s ∈ sessions(r)
into an order � over items(r), where σ � τ if and only if r
contains the tuple (s;σ; τ).

Example 3.2. The table Polls of Figure 1 is an instance
of the preference signature of Example 3.1. This instance
contains three sessions:

• The session (Ann, Oct-5) is associated with the ranking
〈Sanders, Clinton, Rubio, Trump〉;

• The session (Bob, Oct 5) is associated with the ranking
〈Sanders, Rubio, Clinton, Trump〉;

• The session (Dave, Nov 5) is associated with the rank-
ing 〈Clinton, Rubio, Sanders, Trump〉.

Polls represents each ranking explicitly, as an order, by list-
ing all pairwise preferences. This is a conceptual represen-
tation and, in effect, when the orders are rankings (linear
orders) a compact physical representation can be used, as
we do later on in this paper.

A preference schema S is a relational schema with two
types of relation symbols: ordinary relation symbols R that
are associated with ordinary signatures sig(R), and prefer-
ence relation symbols P that are associated with preference
signatures sig(P ). For clarity and brevity, we refer to an or-
dinary and a preference relation symbol as an o-symbol and

PollsE

voter date Preference model MAL(σ, φ)

Ann Oct-5 〈Clinton, Sanders, Rubio, Trump〉, 0.3
Bob Oct-5 〈Trump, Rubio, Sanders, Clinton〉, 0.3
Dave Nov-5 〈Clinton, Sanders, Rubio, Trump〉, 0.5

Figure 2: A MAL-instance over the p-symbol Polls



a p-symbol, respectively. A database D over a preference
schema, called a preference database, associates with each o-
symbol R an instance over sig(R), and with each p-symbol
P an instance over sig(P ); we call the former an o-instance
and the latter a p-instance.

Example 3.3. Our running example uses a preference
schema S with three relation symbols:

• o-symbol Candidates(candidate, party, sex, edu) for in-
formation about political candidates.

• o-symbol Voters(voter, edu, sex, age) for information on
individual voters.

• p-symbol Polls(voter, date; lcand; rcand) for polls of vot-
ers on specific dates.

Figure 1 depicts a preference database over S. We write
“(o)” and “(p)” next to each relation symbol to stress that it
is an o-symbol or a p-symbol, respectively.

In our running example so far, we assumed that we had ex-
act information about voters’ opinions on the candidates on
specific dates. In the next section, we will make this knowl-
edge probabilistic, interpreting the preference database of
Figure 1 as one possible world.

3.2 Probabilistic Preference Databases
Let S be a preference schema. A Probabilistic Preference

Database (abbrv. PPD) over S is a probability space over
preference databases over S. A PPD can be represented
by explicitly specifying the entire sample space; however,
we wish to allow for standard compact representations of
preferences such as RIM and Mallows. In the remainder of
this section we discuss a specific representation of this sort.

A probabilistic preference model is a (finite and typically
compact) representation M of a probability space over par-
tial orders � over a finite set of items; we denote this proba-
bility space by JMK. A probabilistic preference model family,
or just model family for short, is a collection M of proba-
bilistic preference models. As prominent examples, we define
two model families.

• RIM is the family of RIM models RIM(σ,Π).

• MAL is the family of Mallows models MAL(σ, φ).

Let S be a preference schema, and let M be a model
family. Let P be a p-symbol of S and suppose that sig(P ) =
(β;Al;Ar). An M-instance over P is a pair (r, µ), where r
is an instance over β, and µ maps every tuple s ∈ r into a
probabilistic preference model M ∈ M. Each tuple in r is,
as usual, referred to as a session.

Example 3.4. Let S be the preference schema of Fig-
ure 1, as described in Example 3.3. Figure 2 depicts a
MAL-instance (r, µ) over the p-symbol Polls. Note that
r is an instance of the signature β = (voter, date), and in
the figure it is the table on the left. The model µ(s) for
each s ∈ r is shown to the right of s. For example, the
model µ(Ann, Oct-5) is the one we discussed previously in
Example 2.3.

A session-independentM-PPD, or justM-PPD for short,
over a preference schema S is a mapping that associates with

each o-symbol R an instance over sig(R), and with each p-
symbol P anM-instance over P ; we denote these instances
by RE and PE , respectively. An M-PPD E over S defines
a PPD over S by viewing each session as an independent
probabilistic preference model. We denote this PPD by JEK.
More precisely, a sample (or possible world) D of JEK is
constructed by the following generative process.

for all o-symbols R of S do
RD := RE

for all p-symbol P of S do
PD := an empty p-instance over P
let (r, µ) be the M-instance PE

for all sessions s ∈ r do
sample a partial order � from Jµ(s)K
PD := PD ∪ {(s;σ; τ) | σ � τ}

Example 3.5. Let D be the preference database of Fig-
ure 1. We define the MAL-PPD E as the one that consists
of the following:

• The o-instances CandidatesD and VotersD of Fig-
ure 1, now referred to as CandidatesE and VotersE ,
respectively.

• The MAL-instance PollsE of Figure 2, and we denote
it as (r, µ).

Then D is a possible world of JEK. Let s1, s2 and s3 be
the three sessions of r, top down (s1 = (Ann, Oct-5), and so
on). The probability of D in JEK is the product p1×p2×p3,
where p1 is the probability of �s1 in the model µ(s1), which
is MAL(σ, 0.3) for σ = 〈Clinton, Sanders, Rubio, Trump〉,
and p2 and p3 defined analogously for the sessions s2 and
s3, respectively.

3.3 Querying PPDs
We adopt the semantics of probabilistic databases [35] for

query evaluation. Specifically, let S be a schema, let Q be a
query, and let D = (Ω, π) be a PPD. A possible answer for Q
is a tuple a over sig(Q) such that a ∈ Q(D) for some sample
D of D. We denote by PosAns(Q,D) the set of all possible
answers. Note that PosAns(Q,D) is finite, since D is a
finite probability space. The confidence of a possible answer
a ∈ PosAns(Q,D), denoted confQ(D,a), is the probability
of having a as an answer when querying a sample of D:

confQ(D,a)
def
== Pr(a ∈ Q(D))

As a special case, if Q is Boolean then confQ(D) denotes the
probability of true; that is,

confQ(D)
def
== Pr(Q(D) = true) .

In particular, if E is an M-PPD for some model class
M, then evaluating Q on E is the task of computing the
following (finite) set.

Q(E)
def
== {(a, confQ(JEK,a)) | a ∈ PosAns(JEK)}

When Q is Boolean, the evaluation of Q boils down to com-
puting the number confQ(JEK).

Example 3.6. We now present several Boolean CQs for
our running example. We will refer to these queries in later
sections of the paper. For clarity, we refer to every relational



symbol by its first letter (e.g., C for Candidates). We also
follow the convention of using underscore ( ) instead of vari-
ables that occur only once in the query; however, we in-
dex the underscores by subscripts for later reference. Recall
the preference schema in Figure 1: C(cand, party, sex, edu),
V (voter, edu, sex, age) and P (voter, date, lcand, rcand).

The query Q1 asks whether there is a voter with a BS
degree who prefers a male Democratic candidate to a female
Democratic candidate.

Q1()←P (v, 1; l; r), V (v, BS, 2, 3),

C(l, D, M, 4), C(r, D, F, 5)

The query Q2 asks whether there is a voter who prefers a
male candidate to a female candidate such that both candi-
dates are of the same political party.

Q2()← P ( 1, 2; l; r), C(l, p, M, 3), C(r, p, F, 4)

The query Q3 asks whether there is a voter who prefers a
female candidate to both Trump and Sanders.

Q3()←P (v, d; l; Trump), P (v, d; l; Sanders),

C(l, 1, F, 2)

Finally, the query Q4 asks whether there is a voter who
prefers a candidate of the same gender to a candidate of the
same education.

Q4()←P (v, 1; l; r), V (v, 2, s, 3), V (v, e, 4, 5)

C(l, 6, s, 7), C(r, 8, 9, e)

Note that we can combine the atoms V (v, 2, s, 3) and
V (v, e, 4, 5) into a single atom if we make the (natural)
assumption that v is a key. We choose to use this phrasing
to illustrate definitions from the next section.

When evaluating the above Boolean queries over a PPD,
such as the MAL-PPD of Example 3.5, the goal is to com-
pute the probability that the query evaluates to true. For
example, by posing Q1 we wish to compute the probability
that at least one voter with a BS degree prefers a male Demo-
cratic candidate to a female Democratic candidate.

4. CQ EVALUATION ON RIM-PPDS
In this section we establish preliminary complexity results

on querying RIM-PPDs with CQs. All our results are on
data complexity, where the schema and query are considered
fixed. Recall that query evaluation entails computing the
probability of every possible tuple in the result. Given that,
it suffices to consider only Boolean CQs (for both lower and
upper bounds), as the complexity of a general CQ can be
determined by considering the Boolean CQ that is obtained
by replacing the head variables with constant values.

4.1 Tractability of Itemwise CQs
In this section we define the notion of an itemwise CQ over

a preference schema, and give a positive complexity result
on their evaluation over RIM-PPDs. To define an itemwise
CQ, we need some terminology.

Let S be a preference schema, and let Q be a CQ over
S. An atomic formula of Q is called a p-atom if it is over
a p-symbol, and an o-atom if it is over an o-symbol. The
Gaifman graph (or primal graph) of Q, denoted GQ, is the
graph that has the variables of Q as the nodes, and an edge
between two variables x and y whenever x and y are different
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Figure 3: Gaifman graphs (top) and Gaifman o-graphs of
the CQs of Example 3.6

variables that occur in the same atomic formula of Q. The
Gaifman o-graph of Q, denoted GoQ, is defined similarly to
GQ, except that edges due to p-atoms are avoided—there
is an edge between x and y whenever x and y are different
variables that occur in the same o-atom of Q.

Example 4.1. Figure 3 depicts the Gaifman graphs GQ
and the Gaifman o-graphs GoQ for the CQs Q of Example 3.6.
To see the definition of GoQ in action, consider the leftmost
Gaifman o-graph, GQ1 . The variable v is connected by an
edge to the variable l in GQ1 , but not in GoQ1

, since the only
atom that contains both v and l is the p-atom P (v, 1; l; r).
To simplify the figure, in GQ4 and GoQ4

we do not include
the underscore variables, since they do not impact the defi-
nitions that follow.

Let P (s1, . . . , sk; tl; tr) be p-atom of Q. Each term si for
i = 1, . . . , k is said to occur in a session position, and each
of tl and tr is said to occur in an item position. A session
variable of Q is a variable that occurs in a session position,
and an item variable of Q is a variable that occurs in an
item position. We say that Q is sessionwise if all p-atoms
of Q refer to the same session; that is, if P (s1, . . . , sk; tl; tr)
and P ′(s′1, . . . , s

′
l; t
′
l; t
′
r) are p-atoms of Q, then P = P ′ and

(s1, . . . , sk) = (s′1, . . . , s
′
l).

Example 4.2. All of the CQs of Example 3.6 are session-
wise. Indeed, queries Q1, Q2 and Q4 involve a single p-atom
(hence, they are sessionwise by definition), and in Q3 both
atoms have (v, d) in their session parts.

Finally, let g be an undirected graph, and let U and W be
sets of nodes of g. We say that U completely separates W if
every path between two different nodes of W visits at least
one node of U . We can now define an itemwise CQ.

Definition 1 (Itemwise CQ). A CQ Q over a pref-
erence schema is itemwise if Q is sessionwise and the set of
session variables completely separates the set of item vari-
ables in GoQ.



Intuitively, in an itemwise CQ the joins between item vari-
ables occur only inside the p-atoms, or through session vari-
ables. Put differently, in an itemwise CQ with a constant
session, the o-atoms state properties of individual items but
do not draw connections between the items.

Example 4.3. We consider again the CQs of Example 3.6,
and their Gaifman o-graphs in Figure 3. Recall from Ex-
ample 4.2 that the CQs are all sessionwise. The CQ Q1

is itemwise since there is no path between l and r in GoQ1
.

The CQ Q3 is itemwise since there is a single item variable
(namely l). The CQ Q4 is itemwise since there is a single
path between l and r in GoQ4

, and that path visits the ses-
sion variable v. Finally, Q2 is not itemwise since the path
l—p—r does not visit any session variable.

We later prove the following theorem, which states that
every itemwise Boolean CQ can be evaluated in polynomial
time (under data complexity).

Theorem 4.4. Let S be a preference schema, and let Q
be a Boolean CQ over S. If Q is itemwise, then Q can be
evaluated in polynomial time on RIM-PPDs over S.

We discuss the evaluation algorithm in Section 4.4.

4.2 Hardness
The following theorem shows a restricted (yet natural)

class of Boolean CQs where itemwise CQs are precisely the
tractable ones (among the queries in the class), under con-
ventional complexity assumptions. In other words, every
Boolean CQ (in the class) that is not itemwise is necessarily
hard to evaluate, and therefore, we establish a dichotomy.

Theorem 4.5. Let S be a preference schema, and let Q be
a Boolean CQ over S such that Q has no self joins and Q has
a single p-atom. If Q is not itemwise, then the evaluation
of Q on RIM-PPDs over S is FP#P-hard.

Recall that a self join of a CQ is a pair of distinct atoms
with the same relation symbol. Also recall that FP#P is the
class of functions that are efficiently computable using an
oracle to some function in #P. A function f is FP#P-hard
if there is a polynomial-time Turing reduction1 (or Cook re-
duction) from every function in FP#P to f .

The proof of Theorem 4.5 is in the appendix. The proof
technique is similar to that of Dalvi and Suciu [9]. We first
prove hardness of the simplest intractable CQ, which is the
following.

Qh()← R(x, y), P (x; y)

Here, R is an o-symbol and P is a p-symbol.

Lemma 4.6. The evaluation of Qh on a given RIM-PPD
is FP#P-hard.

We then reduce the evaluation of Qh to the evaluation
of every other CQ in the intractability side. We note in
the proof of Lemma 4.6 we explain that the lower bound
holds even for MAL-PPDs (using the same proof). Hence,
Theorem 4.5 applies to MAL-PPDs, and so is the dichotomy
in complexity.

1Using an oracle to a #P-hard (or FP#P-hard) function,
one can solve in polynomial time every problem in the poly-
nomial hierarchy [36].

4.3 Pattern Matching in Labeled Models
Our algorithm for evaluating itemwise CQs (Theorem 4.4)

is a reduction to a certain type of inference over a generalized
RIM model. In this section we introduce this generalized
model and the type of queries we support, and in the next
section we describe the reduction. In Section 5 we present
an efficient algorithm for inference.

We assume an infinite set Λ of item labels. A labeled RIM
model extends RIM by associating with each item a finite
set of labels. More formally, labeled RIM is parameterized
by σ, Π and λ, where RIM(σ,Π) is a RIM model and λ
is a labeling function that maps every item σi in σ to a
finite set λ(σi) of labels in Λ. We denote this model by
RIML(σ,Π, λ). A label pattern (or just pattern for short) is
a directed graph g where every node of g is a label in Λ.
We denote by nodes(g) and edges(g) the sets of nodes and
edges of g, respectively.

Let τ = 〈τ1, . . . , τm〉 be a random ranking of a model
RIML(σ,Π, λ), and let g be a pattern. Recall that �τ is
the linear order that corresponds to τ ; that is, τi �τ τj
if and only if i < j. A matching of g in τ (w.r.t. λ) is a
function γ : nodes(g)→ items(σ) that satisfies the following
conditions.

1. Labels match: l ∈ λ(γ(l)) for all nodes l of g;

2. Edges match: for all edges l → l′ of g it holds that
γ(l) �τ γ(l′).

The ranking τ matches g (w.r.t. λ), denoted (τ , λ) |= g,
if there is at least one matching of g in τ . We denote by
Γ(g, τ ) the set of all the matchings of g in τ .

Example 4.7. Consider the model RIML(σ,Π, λ) for

σ
def
== 〈Sanders, Clinton, Rubio, Trump, Stein〉 .

The labeling λ is given alongside the pattern g of Figure 4a:
next to each label v the candidates with the corresponding
label are mentioned (e.g., λ(Trump) = {lR, lBS}). The label lR
corresponds to “Republican,” lF to “Female,” and lBS to the
“BS” academic degree. Consider the ranking τ given by

τ
def
== 〈Rubio, Clinton, Sanders, Trump, Stein〉 .

Then, Γ(g, τ ) contains the following matchings:

• γ1
def
== {lR 7→ Rubio, lBS 7→ Sanders, lF 7→ Stein}

• γ2
def
== {lR 7→ Trump, lBS 7→ Sanders, lF 7→ Stein}

• γ3
def
== {lR 7→ Trump, lBS 7→ Trump, lF 7→ Stein}

Note that in γ3 two labels are mapped to Trump.

The problem of pattern matching on labeled RIM models
is the following. Given a model RIML(σ,Π, λ) and a pattern
g, compute the probability that a random ranking matches
g; more formally, the goal is to compute Pr(g | σ,Π, λ) that
we define as follows.

Pr(g | σ,Π, λ)
def
==

∑
τ∈rnk(items(σ))

(τ ,λ)|=g

Πσ(τ ) (1)

Note that this expression does not lend itself immediately
to an efficient computation, since the number of possible



rankings τ to consider can be factorial in m. In Section 5
we will present an algorithm for computing this probability,
where the time is polynomial under data complexity (i.e.,
the pattern g is assumed fixed).

4.4 From CQs to Label Patterns
We now describe the reduction from evaluating an item-

wise CQ on a RIM-PPD to computing the probability of
pattern matching over labeled RIM. Throughout this sec-
tion we fix a preference schema S, an itemwise CQ Q over
S, and a RIM-PPD E.

Since Q is itemwise, it uses a single p-symbol (possibly
multiple times), and we denote this p-symbol by P . We as-
sume and that each p-atom has the session terms t1, . . . , tk.
Denote the RIM-instance PE by (r, µ). Hence, µ maps
every session s ∈ r to a RIM model, and we denote it by
RIM(σs,Πs). Recall that our goal is to compute the proba-
bility Pr(JEK |= Q).

Let rQ be the set of tuples in r that can be obtained
from t1, . . . , tk by assigning values to variables. For s =
(a1, . . . , ak) ∈ rQ, let Qs be the CQ that is obtained from Q
by replacing the terms t1, . . . , tk with the constants a1, . . . ,
ak, respectively. The following proposition follows from the
assumption that Q is sessionwise. The proof of the proposi-
tion is straightforward.

Lemma 4.8. The following hold.

1. Pr(JEK |= Q) = Pr
(∨

s∈rQ
(JEK |= Qs)

)
.

2. No two item variables of Qs belong to the same con-
nected component of GoQs .

Lemma 4.8 has several important consequences. From Part 1
we have the following due to probabilistic independence of
the sessions.

Pr(JEK |= Q) = 1− Pr
(
∧s∈rQ (JEK 6|= Qs)

)
=

1−
∏

s∈rQ

Pr(JEK 6|= Qs) = 1−
∏

s∈rQ

(
1− Pr(JEK |= Qs)

)
Therefore, to compute Pr(JEK |= Q) it suffices to compute
the probabilities Pr(JEK |= Qs). Now, all p-atoms of Q use
the same session terms, so to compute Pr(JEK |= Qs) we
can assume that PE contains a single RIM model, namely
RIM(σs,Πs), since any other RIM model does not have its
session matched in Qs.

We now consider Part 2 of Lemma 4.8. We split Qs into
several CQs. Denote by Qs

p the CQ that consists of (all and
only) the p-atoms of Qs, and by Qs

o the CQ that consists of
the remaining atoms (i.e., the o-atoms of Qs). Consider the
graph G that contains the atoms of Qs

o as nodes, and edges
between every two atoms that share one or more variables.
Let C1, . . . , Ck be the connected components of G. For i =
1, . . . , k we denote by Qs

i the CQ that consists of the atoms
in Ci. Part 2 of Lemma 4.8 implies that each Qs

i contains at
most one item variable. Let x be an item variable of some
Qs
i , and let σ ∈ items(σs). We say that σ is a potential

match for x if at least one homomorphism from Qs
i to E

maps x to σ. In addition, σ is a potential match for an item
variable y if y occurs only in p-atoms of Qs.

From the above development we get the following. A ran-
dom ranking τ of RIM(σs,Πs) corresponds to a database D
over S with D |= Qs if and only if both of the following
conditions hold.

1. There is a homomorphism from Qs
i to D for all i =

1, . . . , k.

2. There is a homomorphism µ from Qs
p to PD such that

for all item variables x, the item µ(x) is a potential
match for x.

So, we first check whether the first condition holds. If not,
then Pr(JEK |= Qs) is zero. Otherwise, we construct a label-
ing function λ over σs. The labels in the range of λ are the
terms in the item positions of Qs. For each item variable x,
we include the label x in λ(σi) if σi is a potential match for
x. And for every constant τ , we include the label τ in λ(σi)
if σi = τ . Next, we construct the label pattern g, where (as
expected) the nodes of g are the terms in the item positions
of Qs. The pattern g contains an edge t1 → t2 for every
p-atom of Qs of the form (t′1, . . . , t

′
k; t1; t2), having t1 and t2

on the lhs and rhs attributes, respectively. It follows from
Condition 2 that Pr(JEK |= Qs) is equal to the probability
that RIML(σs,Πs, λ) matches g.

Example 4.9. Let Q be the query Q3 of Example 3.6.
We consider the model RIM(σs,Πs) defined from the model
MAL(σs, 0.3) for the session s = (Ann, Oct-5) in the MAL-
instance of Figure 2. The query Qs is the following.

Qs
3()←P (Ann, Oct-5; l; Trump),

P (Ann, Oct-5; l; Sanders), C(l, 1, F, 2)

The terms in the item positions are l, Trump and Sanders.
Moreover, only Clinton is a potential match for l, since
l stands for a female candidate. Hence, we translate the
evaluation of Qs into RIML(σs,Πs, λ), where λ is defined as
follows.

λ(σ)
def
==


{Trump} if σ = Trump;

{Sanders} if σ = Sanders;

{l} if σ = Clinton;

∅ otherwise.

Finally, the label pattern g is the one of Figure 4b, which
asks for the existence of an l-item before both Trump and
Sanders.

Now let Q be the query Q4 of Example 3.6, and let s be
the above session. The query Qs is the following.

Qs
4()←P (Ann, Oct-5; l; r), V (Ann, 2, s, 3),

V (Ann, e, 4, 5), C(l, 6, s, 7), C(r, 8, 9, e)

There are two terms in item positions: l and r. The potential
matches of l are those that match the subquery

V (Ann, 2, s, 3), C(l, 6, s, 7)

(i.e., the same gender as Ann), and there is only one such
candidate, namely Clinton. Similarly, the potential matches
of r are those that match the subquery

V (Ann, e, 4, 5), C(r, 8, 9, e)

(i.e., the same education as Ann), namely Trump and Sanders.
We construct RIML(σs,Πs, λ), where λ is

λ(σ)
def
==


{l} if σ = Clinton;

{r} if σ ∈ {Trump, Sanders};
∅ otherwise.

Finally, g is simply the graph given by l→ r.
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Figure 4: Examples of label patterns

Observe that the size of the pattern g we generated is
determined by Q, and is independent of the RIM-PPD E.
Hence, we establish Theorem 4.4 if we can efficiently com-
pute the probability that a random sample of RIML(σ,Π, λ)
matches a pattern g of a fixed size. We devise an algorithm
for this task in the next section.

5. INFERENCE ON LABELED RIM
In this section we fix a model RIML(σ,Π, λ) and a pattern

g, where σ = 〈σ1, . . . , σm〉. We devise an algorithm for
computing Pr(g | σ,Π, λ), as defined in (1).

5.1 Top Matchings
Naturally, the challenge in computing Pr(g | σ,Π, λ) is

that the number of rankings in our space (and in particu-
lar those that match g) can be factorial in m. We are able
to overcome this challenge by partitioning the space of all
rankings τ ∈ rnk(σ) into (pairwise-disjoint) subspaces, us-
ing the notion of a top match that we define next. The num-
ber of partitions is polynomial in m (assuming g is fixed),
and hence, it will suffice to compute the probability of each
partition. We then devise an algorithm for computing this
probability.

Let τ be a random ranking. For two matchings γ1 and
γ2 in Γ(g, τ ), we denote by γ1 �τ γ2 the fact that γ1(l) �τ

γ2(l) for all nodes l of g for which γ1(l) 6= γ2(l). A matching
γ ∈ Γ(g, τ ) is said to be a top matching of g in τ if γ �τ γ

′

for all matchings γ′ ∈ Γ(g, τ ).

Example 5.1. Consider the model RIML(σ,Π, λ) of Ex-
ample 4.7, and the pattern g of Figure 4a. The example also
defines a ranking τ and two matchings γ1 and γ2 in Γ(g, τ ).
Then we have γ1 �τ γ2 and, in fact, γ1 is a top matching of
g in τ .

Example 5.2. Consider the model RIML(σs,Πs, λ) con-
structed in Example 4.9, and let g be the label pattern of
Figure 4b. Let τ be given by

τ
def
== 〈Clinton Trump, Rubio, Sanders〉 .

Then a top matching of g in τ is the following:

{l 7→ Clinton , Trump 7→ Trump , Sanders 7→ Sanders}

We denote this matching by γ0 for later reference.

The following lemma shows that if there is any matching
of g in τ , then there is a unique top matching. Recall that
(τ , λ) |= g denotes that Γ(g, τ ) is nonempty.

Lemma 5.3. For all random rankings τ , if (τ , λ) |= g
then there is precisely one top matching of g in τ .

Intuitively, Lemma 5.3 allows us to partition the set of
rankings that match g according to their top match. This
enables us to reduce the inference task to the one of calcu-
lating the probability of the set of possible top matchings.

5.2 Strategy
For a function γ : nodes(g) → items(σ) we denote by

rnk(σ, γ) the set of all rankings τ ∈ rnk(σ) such that
(τ , λ) |= g and γ is the top matching of g in τ . By Lemma 5.3
we have that

Pr(g | σ,Π, λ) =
∑

γ:nodes(g)→
items(σ)

∑
τ∈

rnk(σ,γ)

Πσ(τ ) . (2)

As there is only a polynomial number of functions from
nodes(g) to items(σ), it suffices to be able to efficiently com-
pute

∑
τ∈rnk(σ,γ) Πσ(τ ), which we denote by pγ .

pγ
def
==

∑
τ∈rnk(σ,γ)

Πσ(τ ) (3)

In the rest of this section we show how to compute pγ .
Hence, we fix γ : nodes(g) → items(σ), and present an
algorithm for computing pγ . To shorten the notation, in the
remainder of this section we will denote rnk(σ, γ) by P.

We assume that g is acyclic, and that all nodes of g are
labels that occur in the image of λ; otherwise, pγ = 0. Let l
be a node of g. A child of l is a node l′ such that g has the
edge l → l′, and a parent of l is a node l′ such that g has
the edge l′ → l. We denote by chg(l) and pag(l) the sets of
all children and all parents of l, respectively.

Denote by img(γ) the item set {γ(l) | l ∈ nodes(g)}. The
position of the items in img(γ) within a random ranking is
described by a mapping δ : nodes(g) → [1,m], where δ(l)
represents the position of item γ(l) in the ranking. We say
that δ is consistent with g (or just consistent) if for all edges
l′ → l of g we have that δ(l′) < δ(l). We denote by R the set
of all mappings that are consistent with g. We say that δ is
realized in a ranking τ , or that τ realizes δ, if δ(l) = τ (γ(l))
for every l ∈ nodes(g).

The algorithm is based on the following lemma.

Lemma 5.4. For all τ ∈ rnk(σ) we have τ ∈ P if and
only if there exists a consistent mapping δ such that:

1. τ realizes δ;

2. For every l ∈ nodes(g) and σ ∈ items(τ ), if l ∈ λ(σ)
and τ (σ) < δ(l), then pag(l) 6= ∅ and

τ (σ) < max
l′∈pag(l)

δ(l′) .

In particular, if pag(l) = ∅ then γ(l) is the highest ranking
item of type l in τ , that is, γ(l) �τ σ for all σ such that
l ∈ λ(σ).

Example 5.5. Consider again the RIML(σs,Πs, λ) model
constructed in Example 4.9. Let g be the label pattern of
Figure 4b. Recall the top matching γ0 of g in τ from Ex-
ample 5.2, and assume that γ is γ0. Let δ be the mapping
{l 7→ 1 , Trump 7→ 2 , Sanders 7→ 4}. Then δ is consistent
with g, and δ is realized in τ . The reader can verify that
Lemma 5.4 holds with respect to τ and δ.



We denote by p(δ) the probability that the generated ran-
dom ranking τ is such that τ ∈ P and τ realizes δ:

p(δ)
def
==

∑
τ∈P,

τ realizes δ

Πσ(τ ) (4)

Then, from Lemma 5.3 we conclude that

pγ =
∑
δ∈R

p(δ) . (5)

Next, we describe an algorithm for computing the p(δ) for
all δ ∈ R. The algorithm follows the stochastic insertion
process of RIM, with the following twist. We begin the RIM
process not with the empty ranking, but rather with one
that contains img(γ) in an ordering that is consistent with
g. Since there can be multiple such orderings, we track all
of them simultaneously.

For a formal description, some notation is needed. For
t = 0, . . . ,m we denote by the cardinality of the item set
{σ1, . . . , σt}∪img(γ) by st, and the set of all consistent map-
pings δ : nodes(g) → [1, st] by Rt. In particular, sm = m
and Rm = R. As usual, the algorithm iterates through the
items of σ in order, from σ1 to σm. At iteration t, it inserts
σt into a prefix that contains {σ1, . . . , σt−1} ∪ img(γ) and
realizes a consistent mapping in Rt−1, thereby generating a
new prefix that realizes a mapping in Rt. If σt happens to
be in img(γ), then the insertion is avoided.

Next, we denote by P̂t the set of all rankings τ over
{σ1, . . . , σt} ∪ img(γ) such that for some δ ∈ Rt the two

conditions of Lemma 5.4 are satisfied. For τ ∈ P̂t, we de-
note by τ |t the projection of τ onto {σ1, . . . , σt}. In other
words, τ |t is obtained from τ by removing the items σi of
img(γ) with i > t. In particular, τ |m = τ .

Finally, for δ ∈ Rt we denote by p̂t(δ) the sum of prob-
abilities given by the (classic) RIM distribution function to

all rankings in P̂t that realize δ, projected onto the members
of {σ1, . . . , σt}. Formally:

p̂t(δ)
def
==

∑
τ∈P̂t,

τ realizes δ

Πt
σ(τ |t) (6)

where Πt
σ(τ ′) is the probability of generating the ranking

τ ′ ∈ rnk({σ1, . . . , σt}) at time t (i.e., the product of the
corresponding insertion probabilities).

From the definition of p(δ) in Equation (4), the above
discussion, and the definition of p̂t(δ) in Equation (6) we
conclude that

p(δ) = p̂m(δ) . (7)

Our algorithm computes p̂t(δ) for all t ∈ {1, . . . ,m} and
δ ∈ Rt; in particular, the algorithm computes p̂m(δ), and
hence the required p(δ).

5.2.1 Summary
So far we proved that every ranking that matches g has

a unique top matching, hence computing Pr(g | σ,Π, λ) re-
duces, by (2), to computing the probability that a given
mapping γ is a top matching for a random ranking τ , de-
noted pγ (3). Next, in Lemma 5.4 we translated having γ as
a top matching into consistency conditions over the function
δ that maps img(γ) into specific indices. That allowed us
to reduce the computation of pγ , by (5), to the computa-
tion of p(δ), which the probability that δ is realized in the

random τ (4). Finally, we defined in (6) the function p̂t(δ)
that tracks insertions over a series augmented with img(γ),
so that p(δ) is precisely p̂m(δ). Hence, computing p(δ) re-
duces to computing p̂t(δ

′) for every δ′ ∈ Rt. Our algorithm,
described in the next section, accomplishes this task and
returns pγ .

5.3 Algorithm Description
We begin by defining the insertion probability function

Υ[i, j, δ] for our algorithm, which returns the probability of
inserting item σi into index j of a subranking containing
items {σ1, . . . , σi−1}∪ img(γ), where the members of img(γ)
are positioned as in δ ∈ Ri−1. We denote by img>t(γ) the
items in img(γ) with an index larger than t, that is:

img>t(γ)
def
== img(γ) ∩ {σt+1, . . . , σm}

Intuitively, our insertion function accounts only for incon-
sistencies that arise between item σi and those with a lower
index in σ. Therefore, we can ignore all items of img>i(γ)
in the subranking by appropriately adjusting the insertion
index as follows:

Υ[i, j, δ]
def
==

Π
(
i, j − |{γ(l) ∈ img>i(γ) | δ(l) < j}|

)
)

(8)

That is, Υ[i, j, δ] is the probability Π[i, j′], returned by the
classic RIM insertion function, for inserting item σi into the
modified index j′ that accounts only for those items whose
index is smaller than i.

Recall that Πt
σ(τ ) denotes the probability that RIM gen-

erated the subranking τ , at time t. Analogously, we denote
by Υt

σ(τ ) the probability of the ranking τ induced by the
new insertion function (8). For every consistent mapping
δ ∈ Rt, we compute the probability

qt(δ) =
∑

τ∈Pt,
τ realizes δ

Υt
σ(τ ) .

The algorithm TopProb (Figure 5) constructs the sets of con-
sistent mappings R1, . . . ,Rm by extending the set of con-
sistent mappings from the previous iteration. The initial set
R0 is simply the set of all rankings over img(γ) that are
consistent with g, and for every δ ∈ R0, we define q0(δ) = 1.

At iteration t, a consistent mapping δ ∈ Rt−1 is extended
by inserting item σt into every possible legal position, as
defined by the second condition of Lemma 5.4 (line 3). The
subroutine Range implements this constraint based on the
values in δ (lines 5-7).

In the case where σt ∈ img(γ) (that is, γ(l) = σt for some
l ∈ nodes(g)), there is only a single legal position for σt,
namely δ(l). Therefore, the mapping does not change (i.e.,
δ′ = δ). Otherwise, the mapping is updated according to
the insertion position j as follows. We denote by δ+j the
assignment obtained from δ by inserting an item into index
j in the random prefix; that is, δ+j(l) = δ(l) + 1 whenever
δ(l) ≥ j, and otherwise δ+j(l) = δ(l). The probability of
the resulting mapping δ′, combining the previous mapping
δ and the insertion position j, is calculated in line 8.

In the following section we show that for every consistent
mapping δ ∈ Rt it holds that qt(δ) = p̂t(δ), proving that the
algorithm indeed computes p̂m(δ), and thus p(δ), for every
δ ∈ Rm. This allows us to compute pγ (Eq. (5)).



Algorithm TopProb(RIML(σ,Π, λ), g, γ)

1: for i = 1, . . . ,m do
2: for all δ ∈ Ri−1 do
3: for all j ∈ Range(δ, g, γ, σi) do
4: if σi ∈ img(γ) then
5: δ′ := δ
6: else
7: δ′ := δ+j
8: qi(δ

′) += qi−1(δ)×Υ(i, j, δ)
9: Ri :=Ri ∪ {δ′}

10: return
∑
δ∈Rm qm(δ)

Subroutine Range(δ, g, γ, σi)

1: if σi ∈ img(γ) : σi = γ(l) then
2: return δ(l)
3: si := i+ |img>i(γ)| {prefix size}
4: range := {1, . . . , si}
5: for all {l ∈ λ(σi)} do
6: lp := arg maxl′∈pag(l) δ(l

′)

7: range := range \ {δ(lp) + 1, . . . , δ(l)}
8: return range

Figure 5: An algorithm for computing pγ

5.4 Correctness
Let t > 1 be a position in σ, and let τ ∈ P̂t−1. Then

τ+j is the ranking that results from inserting σt into index
j. If σt ∈ img(γ) then τ+j is simply τ . Otherwise, τ+j [i] =
τ [i − 1] for all i > j, τ+j [j] = σt, and τ+j [i] = τ [i] in case
i < j. As before, τ |t is the ranking projected onto the items
with index at most t. We begin with the following lemma.

Lemma 5.6. The following hold for all iterations t of Top-
Prob.

1. For all legal indices j returned by Range and τ ∈ P̂t−1

we have τ+j ∈ P̂t.

2. For every τ ∈ P̂t there exists a ranking τ ′ ∈ P̂t−1 and
a legal index j returned by Range such that τ ′+j = τ .

Lemma 5.6 implies that the algorithm correctly constructs
the Rt. The lemma is needed for the next one.

Lemma 5.7. In the execution of TopProb we have qi(δ) =
p̂i(δ) for all i ∈ {1, . . . ,m} and δ ∈ Ri.

From Lemma 5.7 we conclude that qm(δ) = p̂m(δ) = p(δ)
for all δ ∈ R. Therefore, from (5) we get the desired proba-
bility, as stated in the following theorem.

Theorem 5.8. Algorithm TopProb returns pγ (Eq. (5)).

Finally, the following theorem gives an upper bound on
the execution cost of the algorithm.

Theorem 5.9. (Complexity) Algorithm TopProb runs in

time O(m|nodes(g)|+2).

Proof. The number of consistent mappings that the al-
gorithm processes is in O(m|nodes(g)|). For each mapping,
all possible insertion positions are inspected, and this is re-
peated for every index i ∈ {1, . . . ,m}, overall the complexity

of the algorithm is O(m|nodes(g)|+2).

Therefore, we establish the main result of this section.

Theorem 5.10. For every fixed label pattern g, the prob-
ability Pr(g | σ,Π, λ) can be computed in polynomial time
on a given RIML(σ,Π, λ) model.

In particular, from the reduction of Section 4.4 and Theo-
rem 5.10 we get the correctness of Theorem 4.4.

5.5 Incorporating Min/Max Conditions
Consider a labeled RIM model RIML(σ,Π, λ). We now

describe an extension of the algorithm TopProb to handle
conditions over the minimal and maximal index where a
label occurs in the random ranking. In the context of our
running example, this allows us to compute probabilities of
the following kinds of events.

1. Every Democratic candidate is preferred to every Re-
publican candidate.

2. Every female Republican is preferred to every male
Democrat.

3. Hillary Clinton is among the top 3 choices.

4. A Libertarian is among the bottom 3 choices.

5. Every Green candidate is ranked higher than every
Republican and lower than every Democrat.

We support such queries as follows. Let RIML(σ,Π, λ) be
a labeled RIM model. We denote by Λλ the (finite) set of
all labels that occur in the image of λ. The positions of the
minimal and maximal items associated with label l ∈ Λλ,
within a random ranking, is described by the following pair
of mappings:

α : Λλ → [1,m] (9)

β : Λλ → [1,m] (10)

That is, α(l) and β(l) represent the positions of the highest
and lowest ranked items of type l in a random ranking, re-
spectively. We say that α and β are realized in a ranking τ ,
or that τ realizes α and β, if for every l ∈ Λλ:

α(l) = min{i | l ∈ λ(τi)}
β(l) = max{i | l ∈ λ(τi)}

To phrase the above examples as conditions over minimal
and maximal indices of labels, suppose that the labels lD,
lG, lL and lR stand for Democratic, Green, Libertarian and
Republican parties, respectively. The first event states that
β(lD) < α(lR), the fourth event states that β(lL) ≥ m−2 (m
being the number of candidates), and the fifth event states
that α(lR) > β(lG) and α(lG) > β(lD).

For a fixed number of labels, there is only a polynomial
number of possible mappings α and β (see (9) and (10)). Our
extension of the algorithm TopProb computes the marginal
probability of each pair of such mappings. Hence, the al-
gorithm can evaluate every fixed condition over these map-
pings, as long as the numerical operations are assumed to



Algorithm TopProbMinMax(RIML(σ,Π, λ), g, γ, ϕ)

1: for i = 1, . . . ,m do
2: for all 〈δ, α, β〉 ∈ Ri−1 do
3: for all j ∈ Range(δ, g, γ, σi) do
4: if σi ∈ img(γ) then
5: 〈δ′, α′, β′〉 := 〈δ, α, β〉
6: else
7: 〈δ′, α′, β′〉 := 〈δ+j , α+j , β+j〉
8: qi(〈δ′, α′, β′〉) += qi−1(〈δ, α, β〉)×Υ(i, j, δ)
9: Ri :=Ri ∪ 〈δ′, α′, β′〉

10: for all l ∈ Λλ | l ∈ λ(σi) do
11: α′(l) := min(α′(l), j)
12: β′(l) := max(β′(l), j)
13: return

∑
{〈δ,α,β〉∈Rm|〈α,β〉|=ϕ} qm(〈δ, α, β〉)

Figure 6: A dynamic programming algorithm for computing
pγ,ϕ

take constant time, as in the Real RAM model [5]. (And
for ordinary Turing machines, the complexity should be ad-
justed to incorporate bitwise operations.)

We now state the formal conclusion. Let Λλ =
{l1, . . . , lk}. By computable min/max condition we re-
fer to any Boolean recursive (computable) condition
ϕ(x1, . . . , xk, y1, . . . , yk) over the natural numbers where xi
and yi represent the values of α(li) and β(li) respectively.
The mappings α and β are essentially an assignment to the
variables of ϕ. We say that the mappings α and β satisfy
a min/max condition ϕ, denoted 〈α, β〉 |= ϕ if substituting
the values of these mappings to the corresponding variables
causes ϕ to evaluate to true.

Given a label pattern g, we denote by Pr(g ∧ ϕ | σ,Π, λ)
the probability that a random ranking τ matches g (i.e.,
(τ , λ) |= g), and realizes a pair of mappings α and β that
satisfy ϕ (i.e., 〈α, β〉 |= ϕ). In particular, we denote by pγ,ϕ
the probability that γ is the top matching of g in a random
ranking (see (3)) that also realizes a pair of mappings α and
β, which satisfy ϕ.

Theorem 5.11. For every fixed label pattern g and fixed
computable min/max condition ϕ, the probability Pr(g ∧ ϕ |
σ,Π, λ) is computable in polynomial time on Real RAM for
given labeled RIM models RIML(σ,Π, λ).

Theorem 5.11 is realized by the dynamic programming al-
gorithm TopProbMinMax (Figure 6), which is an extension
of the algorithm TopProb (Figure 5), and explained below.

The constraints defined by a min/max condition ϕ are in-
corporated into the dynamic programming algorithm (Fig-
ure 6) as follows. We extend the set of mappings maintained
by the algorithm to a triple 〈δ, α, β〉 where δ remains un-
changed (recall that δ : nodes(g) 7→ [1,m] represents the po-
sition of the item γ(l) in a random ranking), and mappings
α and β are as previously described (see (9) and (10)). A
triple 〈δ, α, β〉 is consistent if δ is consistent (that is, for all
edges l′ → l of g the inequality δ(l′) < δ(l) holds).

The new algorithm TopProbMinMax, supporting min/max
conditions is depicted in Figure 6. The subroutine Range is

the same as in algorithm TopProb, and is therefore omit-
ted. The updating of the values in mappings α and β, for
each label l ∈ Λλ, is performed in lines 10-12. The rest
of the algorithm follows in a straightforward manner from
algorithm TopProb.

The extended algorithm maintains and processes a larger
state space, leading to increased complexity. Nevertheless,
the number of possible consistent mappings 〈δ, α, β〉 is lim-

ited to O(m3|Λλ|). While larger than the space maintained
by the original algorithm (TopProb), this is still exponential
only in the size of the query, preserving the polynomial data
complexity.

6. CONCLUDING REMARKS
In our past vision paper [18] we made the case for incor-

porating preferences into the relational model, to allow for
queries that involve popular operations over preferences. In
this paper we proposed a novel angle to this framework—
querying probabilistic preferences by utilizing the expressive
power of the relational model. Our investigation of RIM-
PPDs illustrates that our framework gives rise to new chal-
lenges in two domains: databases and statistical inference.
In particular, we showed how the evaluation of CQs leads to
a novel and natural inference problem over RIM models, and
we presented a nontrivial algorithm for solving this problem.
We conclude this paper by proposing several directions for
future research.

Theoretical directions include the generalization of our re-
sults in various directions: more general query languages
(e.g., larger fragments of FO), a more general dichotomy in
the complexity of CQs, approximate query evaluation (e.g.,
PTAS on Boolean CQ evaluation), and additional statistical
models of preferences (e.g., Choi et al. [8]). Furthermore, it
is important to establish general conditions where tractabil-
ity can be attained under combined (i.e., query-and-data)
complexity.

Practical directions are, naturally, abundant. While our
algorithm provides the guarantee of polynomial time, trans-
lating it into a practical implementation over preferences of
realistic volumes presents significant challenges. Our long-
term goal is to build a database system that incorporates
preferences in the PPD model, and allows for both non-
trivial preference-specific operations (e.g., rank aggregation)
and statistical inference.

Towards this goal, we will propose efficient physical repre-
sentations of preferences. Further, we will develop efficient
algorithms for exact answering of probabilistic preference
queries that leverage CPU parallelism and data parallelism
in distributed architectures. Finally, we will explore perfor-
mance optimization opportunities that can be derived from
approximate query answering. Our ongoing and future sys-
tems work will build on the theoretical insights developed in
this paper.
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APPENDIX
A. ADDITIONAL PROOFS

A.1 Proof of Lemma 4.6
Lemma 4.6. The evaluation of Qh on a given RIM-PPD

is FP#P-hard.

Proof. The proof is by reduction from the problem of
counting the number of linear extensions of a partial or-
der. The input for this problem consists of a set A =
{σ1, . . . , σm} of items and a partial order � over A. The
goal is to compute |rnk(A|�)|, where rnk(A|�) is the set
of all rankings σ ∈ rnk(A) that satisfy σi �σ σj whenever
σi � σj . This problem is known to be #P-complete [6].
Given the input A and �, we construct the following RIM-
PPD E. The relation RE is the inverse of �, that is, it con-
sists of all the pairs (σj , σi) where σi � σj . The single model
of PE is RIM(σ,Π), where σ is the ranking 〈σ1, . . . , σm〉 and
Π is the insertion function that defines a uniform distribu-
tion over the permutations of A; that is: Π(i, j) = 1

i
when-

ever 1 ≤ i ≤ m and 1 ≤ j ≤ i. Note that RIM(σ,Π) is the
same as MAL(σ, 1).

Observe that every possible world W of the PPD JEK
consists of RW , which is the same as RE , and a linear order
over A that is encoded in PW . Also note that a possible
world satisfies Qh if and only if PW shares at least one pair
with RW . From the construction of RW it follows that W
satisfies Qh if and only if PW is not a linear extension of
�. Finally, we observe that every possible world W has
the same probability, namely 1

m!
(where m is the number of

items in A). Therefore:

confQh
(JEK) =

m!− |rnk(A|�)|
m!

.

In particular, we can compute |rnk(A|�)| by multiplying
1− confQh

(JEK) by m!.

A.2 Proof of Theorem 4.5
Theorem 4.5. Let S be a preference schema, and let

Q be a Boolean CQ over S such that Q has no self joins
and Q has a single p-atom. If Q is not itemwise, then the
evaluation of Q on RIM-PPDs over S is FP#P-hard.

Proof. We will prove the hardness of evaluating Q over
RIM-PPDs by a reduction from the evaluation of the CQ
Qh()← R(x, y), P (x; y), which is shown to be FP#P-hard in
Lemma 4.6. Let Eh be an input RIM-PPD instance over
the schema of Qh. Then Eh maps R to an instance REh

over R, and P to a RIM-instance that consists of a single
RIM-model, which we denote by Mh.

Let PQ(β;Al;Ar) be the single p-symbol that appears in
Q, and let PQ(s1, . . . , sk;xQ; yQ) be the single p-atom of Q.
Observe that xQ and yQ must be distinct, and neither is a
session variable; otherwise, Q is itemwise by definition, con-
tradicting our assumption. We fix a constant c, and denote
by (c1, . . . , ck) the tuple that is obtained from (s1, . . . , sk) by
replacing every variable with c. Hence, the tuple (c1, . . . , ck)
consists of the constants in {s1, . . . , sk} and, possibly, the
constant c.

We now construct a RIM-instance E over the schema of
Q. The RIM-model PEQ is the pair (r, µ), where the relation
r consists of the single tuple (c1, . . . , ck) defined above, and µ
maps this tuple to the above model Mh. The o-instances of

E are constructed by the following procedure. For each tuple
(a, b) of REh and o-atom S(t1, . . . , tn) of Q, we add to the
S-instance of E the tuple (d1, . . . , dn), where for i = 1, . . . , n
we have:

di =


ti if ti is a constant;

c if ti is a session variable;

a if ti = xQ;

b otherwise.

Observe that every variable z of Q that is neither xQ nor
a session variable is replaced with b. In particular, yQ is
replaced with b. Let p be a path of GoQ that does not visit
any session variable. The existence of p is guaranteed, since
Q is not itemwise. Then all the variables along p are replaced
with b, except for xQ that is replaced with a. In particular,
there is an edge in p such that one incident node is replaced
with a and one with b.

This completes the construction of E. To complete the
proof, we will show that

Pr(Q(JEK) = true) = Pr(Qh(JEhK) = true) . (11)

Let Qo be the CQ that is obtained from Q by removing
the single p-atom. From the construction of E we get the
following.

1. For every tuple (a, b) of REh there is a homomorphism
from Qo to E that maps xQ and yQ to a and b, respec-
tively.

2. For every homomorphism from Qo to E that maps xQ
and yQ to a and b, respectively, the tuple (a, b) is in
REh .

We mention here that the second item uses the fact that
there are no self joins, and is not necessarily true otherwise.

Finally, from the construction of PEQ it follows that there
is a bijection ϕ between the possible worlds of JEhK and
JEK such that for every possible world D of JEhK we have
that Qh(D) = Q(ϕ(D)), and moreover, D and ϕ(D) have
the same probability. Hence, Equation (11) immediately
follows, as required.

A.3 Proof of Lemma 5.3
Lemma 5.3. For all random rankings τ , if (τ , λ) |= g

then there is precisely one top matching of g in τ .

Proof. If (τ , λ) |= g then there exists a matching of g in
τ . This means that there is a mapping from the nodes of g
to the items of τ that is consistent with the edges of g. Since
τ defines a total order over its items and in particular over
the items mapped by the matching, then g must be acyclic.

We prove the claim by induction on |nodes(g)|. If g con-
tains a single node l, then γ∗(l) = τk where k = min{i ∈
{1, . . . ,m} | l ∈ λ(τi)}. Since τ matches g, then k exists,
and by the minimality condition is unique.

Assume correctness for patterns with n nodes, and we
prove the claim for a pattern with n+ 1 nodes. Consider a
node l ∈ nodes(g) with no outgoing edges in g. Since g is
acyclic such a node must exist. Now consider the pattern
induced by nodes(g) \ {l} (i.e., without l and its incoming
edges), defined over n nodes. Since τ matches g it must
also match the pattern induced by nodes(g) \ {l}, denoted
gn. By the induction hypothesis, τ has a single, unique top
matching γ∗n corresponding to gn. Let τk be an item in τ



that is associated with l (i.e., l ∈ λ(τk)). We define k as
follows. If pag(l) 6= ∅ then τk is the highest ranked item of
type l that appears after γ∗n(u) for each u ∈ pag(l):

k = min

{
i > max

u∈pag(l)
τ (γ∗n(u)) | l ∈ λ(τi)

}
(12)

Recall that τ (a) denotes the index of item a in the ranking.
Otherwise, if pag(l) = ∅, then:

k = min {i > 0 | l ∈ λ(τi)}

Since τ matches g, such an index k must exist, and due to
the minimality condition, is unique. Define the matching
γn+1 as follows:

γn+1(u) =

{
γ∗n(u) if u 6= l

τk otherwise

We now show that γn+1 is both minimum and unique. By
the induction hypothesis γ∗n is both minimum and unique
for the pattern g excluding the node l. Therefore, the top
matching for g must be identical to γ∗n for all nodes in
nodes(g) \ {l}. By the minimality and uniqueness of the
index k, we get that γn+1 is also minimum and unique, as
required.

A.4 Proof of Lemma 5.4
Lemma 5.4. For all τ ∈ rnk(σ) we have τ ∈ P if and

only if there exists a consistent mapping δ such that:

1. τ realizes δ;

2. For every l ∈ nodes(g) and σ ∈ items(τ ), if l ∈ λ(σ)
and τ (σ) < δ(l), then pag(l) 6= ∅ and

τ (σ) < max
l′∈pag(l)

δ(l′) .

Proof. We prove each direction separately.

The “only if” direction. Let τ ∈ P. Hence, γ is a
top matching for g in τ . We will show that there exists a
consistent mapping δ such that τ and δ meet the conditions
of the lemma. Define the mapping δ : nodes(g)→ [1,m] such
that δ(l) is τ (γ(l)), that is, the index of γ(l) in τ . By this
definition, τ clearly realizes δ, and δ is consistent with g.

Assume, by way of contradiction, that the second item
of the lemma is not met. That is, there exists a label l ∈
nodes(g), and an item τi such that (a) l ∈ λ(τi), (b) τi �τ

γ(l), and (c) either pag(l) = ∅ or i > maxl′∈pag(l) δ(l
′). In

this case, the mapping γ′ : nodes(g)→ [1,m] defined as:

γ′(v) =

{
γ(v) if v 6= l

τi otherwise

is a matching for τ (i.e., γ′ ∈ Γ(g, τ )), and γ′ �τ γ. There-
fore, we arrive at a contradiction that γ is a top matching
for g in τ .

The “if” direction. Now assume that τ realizes a consis-
tent mapping δ such that τ and δ meet the conditions of the
lemma. We will show that τ ∈ P. The fact that τ realizes δ
means that δ maps the items of img(γ) to their positions in
τ . Therefore, the matching γ is defined by γ(l) = τ (δ(l)).
Since δ is consistent, we get that γ is a matching of g in τ
(i.e., γ ∈ Γ(g, τ )).

Assume, by way of contradiction, that there exists a match-
ing γ′ of g in τ such that γ′ 6= γ and γ′ �τ γ. (Recall from
Lemma 5.3 that the top matching is unique.) This means
that there exists a label l ∈ nodes(g) such that γ′(l) �τ γ(l).
We can assume that g is acyclic, since otherwise Γ(g, τ ) is
empty. Let l ∈ nodes(g) be the smallest node in some topo-
logical order over g, for which γ′(l) �τ γ(l).

If pag(l) = ∅, then we immediately arrive at a contradic-
tion of the second condition of the lemma. So, we assume
that pag(l) 6= ∅. Since γ′ is a matching, it holds that γ′(l) ap-

pears after all items γ′(lp) where lp ∈ pag(l). Moreover, the
fact that l was chosen to be first in some topological order
over g implies that γ′(lp) = γ(lp) for every node lp ∈ pag(l).

Therefore, the label l and the item σ = γ′(l) are in violation
of the second condition of the lemma, proving the claim.

A.5 Proof of Lemma 5.6
We denote by τ−j the ranking that results from removing

item τ [j] from the ranking τ . Specifically, τ−j [i] = τ [i] for
all i < j, and τ−j [i] = τ [i+ 1] otherwise.

Lemma 5.6. The following hold for all iterations t of Top-
Prob.

1. For all legal indices j returned by Range and τ ∈ P̂t−1

we have τ+j ∈ P̂t.

2. For every τ ∈ P̂t there exists a ranking τ ′ ∈ P̂t−1 and
a legal index j returned by Range such that τ ′+j = τ .

Proof. We recall that P̂t is the set of all rankings τ over
{σ1, . . . , σt} ∪ img(γ) such that for some δ ∈ Rt the two
conditions of Lemma 5.4 are satisfied.

We first prove the claim for the case where σt ∈ img(γ).

In this case, the rankings of both P̂t−1 and P̂t are defined
over the items in {σ1, . . . , σt} ∪ img>t(γ). For this reason

we also have that Rt−1 = Rt. Hence, we get that P̂t−1 =

P̂t, proving both claims. In the remainder of the proof we
assume that σt /∈ img(γ).

We first prove Part 1. Assume that τ ∈ P̂t−1, and let
δ ∈ Rt−1 be the mapping realized by τ . Then for every
legal index j returned by Range, τ+j realizes the mapping
δ+j , which is consistent because δ is consistent. Therefore,
δ+j ∈ Rt. Furthermore, according to Range, the position j
is guaranteed to ensure the second condition of Lemma 5.4
with respect to the mapping δ+j . Therefore, by definition

of P̂t we get that τ+j ∈ P̂t.
We now prove Part 2. Assume that τ ∈ P̂t, and let δ ∈ Rt

such that τ realizes δ. Therefore, every item in τ is in a
legal position with respect to δ. In particular, σt is in a
legal position j of τ (i.e., τj = σt). We consider the ranking

τ−j . Since τ ∈ P̂t realizes δ ∈ Rt, then τ−j realizes the
mapping δ−j , which is consistent because δ is consistent,
thus δ−j ∈ Rt−1. Since τ and δ ∈ Rt meet the conditions of
Lemma 5.4, then τ−j and δ−j ∈ Rt−1 do so as well, because
the −j operator cannot cause a violation of the lemma’s

second condition. From that, we get that τ−j ∈ P̂t−1.

A.6 Proof of Lemma 5.7
Lemma 5.7. In the execution of TopProb we have qi(δ) =

p̂i(δ) for all i ∈ {1, . . . ,m} and δ ∈ Ri.



Proof. The proof of the lemma follows an inductive ar-
gument on the index i. As the basis of the induction, con-
sider any consistent mapping δ ∈ R1. The probability cal-
culated by the algorithm (line 8) is

q1(δ) = q0(δ0)×Υ(1, j, δ) = 1

for any j ∈ {1, . . . , |img(γ)| + 1}. This is because q0(δ0) =
1 by definition, and Υ(1, j, δ) = Π(1, 1) = 1 for any j ∈
{1, . . . , |img(γ)|+1} (see (8)). We now show that p̂1(δ) = 1,

proving the basis. Let τ ∈ P̂1. Since τ |1 = 〈σ1〉, we get,

by (6), that p̂1(δ) = Π1
σ(τ |1) = 1. This proves that q1(δ) =

p̂1(δ) as required.
We now assume correctness for i − 1, and prove that

qi(δ) = p̂i(δ). Assume that σi ∈ img(γ). In this case,
let l ∈ nodes(g) be such that σi = γ(l). Therefore, σi is
inserted into position δ(l) (line 2 of Range), and the result-
ing realization δ′ ∈ Ri is identical to δ ∈ Ri−1 (line 5 of
TopProb). Therefore,

qi(δ) = qi−1(δ)×Υ(i, δ(l), δ) .

By the induction hypothesis qi−1(δ) = p̂i−1(δ), and com-
bined with (6), we get that

qi(δ) = p̂i−1(δ)×Υ(i, δ(l), δ)

=
∑

τ∈P̂i−1,
τ realizes δ

Πi−1
σ (τ |i−1)×Υ(i, δ(l), δ) . (13)

Now, consider any ranking τ |i−1, where τ ∈ P̂i−1. Since
σi ∈ img(γ) is positioned at index δ(l) of τ , the ranking
that results from inserting item σi into position δ(l) in the
ranking τ |i−1 is exactly τ |i. Therefore,

Πi
σ(τ |i) = Πi−1

σ (σ, τ |i−1)×Υ(i, δ(l), δ) . (14)

Furthermore, since σi ∈ img(γ), P̂i−1 and P̂i are defined
over the same set of items {σ1, . . . , σi} ∪ img>i(γ), and for

the same reason Ri−1 = Ri. Therefore, P̂i−1 = P̂i, and in
particular,

{τ ∈ P̂i−1 | τ realizes δ} = {τ ∈ P̂i | τ realizes δ′} . (15)

Substituting (14) and (15) into (13) proves the inductive
step.

For the second case we assume that σi 6∈ img(γ). Note

that in this case, for every ranking τ ∈ P̂i−1 we have that
τ |i−1 is identical to τ |i. We denote by I(i, δ) the set of legal
indexes returned by the procedure Range(δ, g, γ, σi). Finally,

for brevity, we denote by P̂t(δ) to be the set of rankings in

P̂t that realize δ. We start by expressing the probability
qi(δ) computed by TopProb.

qi(δ) =
∑

δ′∈Ri−1

qi−1(δ′)
∑

j∈I(i,δ),
δ′+j=δ

Υ(i, j, δ) (16)

By the induction hypothesis we have that qi−1(δ′) = p̂i−1(δ′),
and therefore,

qi(δ) =
∑

δ′∈Ri−1

p̂i−1(δ′)
∑

j∈I(i,δ),
δ′+j=δ

Υ(i, j, δ) . (17)

We substitute the exact definition of p̂i−1(δ′) by (6) and get
the following.

qi(δ) =
∑

δ′∈Ri−1

∑
τ∈P̂i−1(δ′)

Πi−1
σ (τ |i−1)

∑
j∈I(i,δ),
δ′+j=δ

Υ(i, j, δ)

(18)
As we remarked, since σt /∈ img(γ), then τ |i−1 = τ |i. There-
fore, we can write:

qi(δ) =
∑

δ′∈Ri−1

∑
τ∈P̂i−1(δ′)

∑
j∈I(i,δ),
δ′+j=δ

Πi−1
σ (τ |i) ·Υ(i, j, δ)

(19)
According to (8), Υ(i, j, δ) = Π(i, j′), where j′ is the modi-
fied index that considers only the items {σ1, . . . , σi−1}. That
is, j′ is the index that corresponds to j for the ranking τ |i.
By the definition of τ+j , we have that

Πi−1
σ (τ |i) ·Υ(i, j, δ) = Πi

σ((τ |i)+j) .

By substituting and reversing the summation order we get
that

qi(δ) =
∑

δ′∈Ri−1

∑
j∈I(i,δ),
δ′+j=δ

∑
τ∈P̂i−1(δ′)

Πi
σ((τ |i)+j) . (20)

So now, we only need to show that the set of rankings ag-

gregated in (20) is precisely P̂i(δ). We denote this set of

rankings by Q̂i(δ) and express it as follows.

Q̂i(δ) = {τ | τ realizes δ and ∃j ∈ I(i, δ) s.t. τ−j ∈ Pi−1}

From Lemma 5.6 we conclude that Q̂i(δ) = P̂i(δ), as re-
quired.


